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Editorial

An Added Perspective on the 2009 
SPARTAN and IGAS Report: 
An Innate Axial Myofascial Hypertonicity

The 2009 Joint Meeting of the Spondyloarthritis Research

and Therapy Network (SPARTAN) and International

Genetics of Ankylosing Spondylitis (IGAS) members was

recently reported1. These comments offer a novel hypothe-

sis to complement the progress reviewed in that report.

Based upon the characteristic clinical and epidemiological

features of ankylosing spondylitis (AS), a structural biome-

chanical contribution in causation is proposed, namely, an

innate axial (spinal) myofascial hypertonicity2,3. Such a

macro-diathesis would encompass biomechanical models

already proposed at micro levels of tissue attachments

(entheses) and related sites4,5,6. This commentary can only

briefly outline biomechanical and clinical reasons for the

proposed novel hypothesis in AS, as described2,3,7. The

hypothesis also incorporates myofascial physiology7,8 and

tensegrity9,10 mechanisms in the musculoskeletal system.

Consensus clinical features of AS1,10,11,12,13 suggest that

biomechanical influences may be operating at the level of

both the body structure and tissue. Excessive physical force

(L, fortis, strong) transmissions can be detrimental to both

structures and enthesis sites2,5,7. The magnitudes of imposed

(input) or internal (reactive) forces are influenced by the

stiffness of a body or its component tissue attachments5,7.

Force transmissions become amplified at sites of greater

stiffness or resistance and concentrate at transition bound-

aries (entheses)5,7. Further, in mobile systems like the spine,

with flexible links, the fusing (or stiffening) of component

parts increases the stress concentrations in remaining con-

nections7. Such physical principles are consistent with the

progression of structural lesions in AS1,11,12. Typically,

symptoms and structural pathology begin in the sacroiliac

joints (SIJ), which bear the full load of the spine, and sub-

sequently ascend up the vertebral column11. The spine and

SIJ are complex, integrated, mobile, and load-bearing bio-

mechanical structures2.

As indicated in the SPARTAN and IGAS reviews1, the

onset age, sex, clinical, and pathological characteristics of

AS are distinctive features, in addition to its strong genetic

susceptibility. The causation of AS is complex and multifac-

torial1. The proposed novel hypothesis was inferred from

those characteristic features1,2,10,11,12,13, assuming that such

expressions would reveal additional clues to underlying

pathways.

Onset of AS is notable in adolescent and young adult

ages, from age 15 to 35 years, in both sexes1,10,11,12,13.

About two-thirds of onsets of AS occur in this distinctive

range, the mean and median ages of onset being about 23

years14. Of note, physical maturation in adolescence and

young adulthood naturally strengthens and stiffens the axial

(postural and spinal) myofascia in both sexes15.

Accordingly, patterns of age of onset in AS may in part

reflect the natural developmental and maturational changes

in axial stiffening15 as well as the inherent disease severity

risks14. Paralumbar muscles can be nearly twice as strong in

men as in women, which is also consistent with the overall

male preponderance of AS1,11,12,13,16. Females tend to have

less syndesmophyte formation and severe spinal deformity

than males1,2,11,12,13, which may reflect their lesser natural

spinal stiffness and strength. In addition, peripheral arthritis

in juvenile and adult patients with AS predominates in the

lower extremities17. That localization could result, in part,

from increased impact stresses upon the lower extremities

from the greater spinal stiffening15.

Personal considerations of biomechanical pathways in

AS had evolved over a period of 3 decades13,16. Such infer-

ences had led to research and characterization of the subtle

and little appreciated polymorphic trait of human resting

myofascial tone (HRMT)7,8,18. Axial or postural HRMT is

an innate polymorphic trait independent of the central nerv-

ous system that contributes vitally to postural stability in

balanced equilibrium positions7,8,18. Increased paralumbar

muscle stiffness in patients with early AS was first reported

in 1951 by Forestier, et al19, who described this finding as

the “bowstring sign”19. That observation was subsequently

confirmed by palpation and electromyography studies, as

reviewed20.

Insufficient compared to excessive innate axial HRMT

was proposed as the expression of counter-opposing spinal

disorders, i.e., adolescent idiopathic scoliosis (AIS) versus

AS, respectively21. Those conditions have their respective

polygenic determinants21. As well, genome-wide associa-

tion studies in Caucasian patients have now been per-

formed1,22,23,24, which deserve critical comparison. Indeed,

analytical methodology is now available to test if these dis-

orders show inverse associations of single-nucleotide poly-

morphism alleles24.
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Monozygotic twin studies suggest that AS susceptibility

has a 90% or slightly greater genetic inheritance and that

HLA-B27 overall has almost half of the genetic associa-

tion1,22. Thus, a comparable degree of association is left to

all other non-HLA-B27 combined factors1,22. The

HLA-B27 gene is found in about 90% of Caucasian patients

with AS, and has a risk ratio of about 100-fold22. Yet the

molecular mechanisms underlying the basis for such an

association are not known1,22. Neither have the genetic

determinants of HRMT polymorphism been determined7,18

(PubMed search, 2011), although aging and gender have

effects on contractile properties of human skeletal muscle

and single fibers25.

Of note, HLA-B27 is one of only 2 genetic markers

observed to correlate significantly with colder climates in

both hemispheres26. This finding and research on human

non-exercise activity thermogenesis (NEAT)27 suggested

that the HLA-B27 gene was possibly related, in part, to cold

climate adaptation and to greater intrinsic energy expendi-

tures by skeletal muscles10.

The course, severity, and progression of AS encompass a

wide spectrum11,12,13. However, burnout (i.e., indefinite

remission) rarely occurs28. The trajectory of spinal damage

in AS may be individualized29 and may already be deter-

mined at an early disease stage within the host14. Current

research on genotype and phenotype markers of progression

in AS is promising1, as is current work in adolescent idio-

pathic scoliosis23.

Anti-tumor necrosis factor therapy has shown significant

benefits in reducing inflammation-related measures of AS,

but the vertebral osteoproliferative lesions appear to be

unabated1. Osteoproliferative lesions could be contributed

by injury-related pathways, possibly from continuing conse-

quences of excessive stress mechanisms2,3,4,5,6. A critical

question is if axial myofascial hypertonicity in AS might

precede the onset of pain (not stiffness) and inflammatory

indicators? A prospective study design has been outlined to

investigate this question among high-risk asymptomatic sus-

ceptible subjects and matched controls7.

In early AS, MRI signal hyperintensities (lesions) are

found in the spinal and SIJ bone marrow and at entheses on

short inversion time inversion-recovery (STIR) images and

on T2-weighted (water molecules) images1. In patients with

AS, these lesions are usually referenced as inflammatory.

However, studies of osteoarthritis30 and sports-related

injuries31 show analogous hyperintensities, but are com-

monly described as bone marrow edema or edema-like

lesions. Those MRI findings are mainly attributed to altered

biomechanical/degenerative origins or excessive tissue

stresses, rather than being inflammatory. Possible effects of

excessive stresses or other biomechanical mecha-

nisms2,3,4,5,6 should be considered in the early MRI changes

of AS that progress to osteoproliferative lesions.

This perspective is consistent with current concepts and

progress reviewed in the SPARTAN and IGAS report1,22.

Figure 1 illustrates our proposed added structural bio -

mechanical component to the complex predisposition and

course of AS that is novel and that deservies further critical

examination. The current perspective of a possible innate

mechanical diathesis in AS and the proposed schematic

(Figure 1) may reveal theoretical pathways by which osteo-

proliferative reactions may proceed in this disorder, even

though inflammatory mechanisms might be suppressed.
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Figure 1. Theoretical pathways by which osteoproliferative reactions may

proceed.
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