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High DNA Oxidative Damage in Systemic Sclerosis
JEROME AVOUAC, DIDIER BORDERIE, OVANESSE GARABED EKINDJIAN, ANDRE KAHAN, 

and YANNICK ALLANORE

ABSTRACT. Objective. Several lines of evidence suggest that the generation of reactive oxygen species (ROS) is

of major importance in the pathogenesis of SSc. Protein and lipid damage have previously been

demonstrated, but scarce data are available on oxidative damage to DNA. In patients with SSc, we

evaluated levels of 8-hydroxy-2’-deoxyguanosine (8-oxodG), the main validated biomarker of

endogenous oxidative damage to DNA, compared to levels of F2-isoprostane, a product of free rad-

ical-mediated peroxidation of arachidonic acid.

Methods. Urinary levels of 8-oxodG and 8-isoprostaglandin-F2a (8-iso-PGF2a) were determined by

competitive ELISA method in consecutive SSc patients and controls matched for age and sex.

Results. We included 80 unrelated SSc patients (72 women, mean age 56 ± 11 yrs) and 39 controls

(33 women, mean age 64 ± 8 yrs). Urinary levels of 8-oxodG/creat and 8-iso-PGF2a/creat in SSc

patients were found to be higher than in controls (6.5 ng/mg vs 3.7 ng/mg, p = 0.0001; and 11.4

ng/mg vs 4.2 ng/mg, p < 0.0001). In multivariate analysis, 8-oxodG levels were associated with the

presence of pulmonary fibrosis on computerized tomography scan, decreased forced vital capacity,

and decreased DLCO/alveolar volume. In patients with the diffuse cutaneous subset, a modified

Rodnan skin score > 14 was independently associated with 8-oxodG levels. In SSc, 8-oxodG and

8-iso-PGF2a values were correlated (r = 0.32; p = 0.005).

Conclusion. Our study confirmed marked oxidative stress in SSc. We also found increased values

of 8-oxodG in SSc patients and a relevant association with a fibrotic phenotype. The predictive value

of this marker and its potential influence on fibrotic disturbances remain to be determined. 
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Systemic sclerosis (SSc) is a connective tissue disease char-

acterized by early generalized microangiopathy, including

vasospastic tendencies, that culminates in systemic fibrosis.

Several lines of evidence suggest that generation of free rad-

icals may be important in SSc1. Free radicals damage pro-

teins, lipids, DNA, collagens, and the immune system. They

are mainly generated by ischemia/reperfusion injuries or dur-

ing the inflammatory process2. Moreover, monocytes from

patients with SSc can produce large amounts of the superox-

ide anion3,4, and fibroblasts produce reactive oxygen species

(ROS)5. In addition, some tissue antigens are susceptible to

fragmentation in an oxidative microenvironment6. An

increase in susceptibility to oxidation may be related to an

increase in oxidative stress or a decrease in antioxidants7. In

SSc, markers of lipid peroxidation, including plasma malon-

dialdehyde8, thiobarbituric acid-reactive substances9, anti-

bodies against oxidized low-density lipoproteins10, and

bioactive F2-isoprostane (F2-isoPs) concentrations are ele-

vated11,12. Among these markers, F2-isoPs, a reliable marker

of lipid oxidant injury in vivo, has been well studied and was

shown to correlate with severity of both microangiopathy

and lung involvement13,14. This large amount of data on lipid

peroxidation contrasts with the lack of evidence of oxidative

DNA damage in SSc. 8-Oxodeoxyguanosine (8-oxodG) is

the most abundant DNA lesion caused by ROS. It is highly

mutagenic, resulting in GC to TA transversions. After cleav-

age from DNA as a result of DNA repair, 8-oxodG is excret-

ed in urine. Another significant source of extracellular

8-oxodG may be oxidation of the nucleotide pool15. Urinary

8-oxodG levels are therefore considered as a general bio-

marker of oxidative stress. Methods used for 8-oxodG detec-

tion include high-performance liquid chromatography, tan-

dem mass spectroscopy, and a recently developed competi-

tive ELISA16.

The aim of our study was to evaluate DNA oxidative

damage in SSc. We measured urinary concentrations of

8-oxodG and urinary levels of 8-isoprostaglandin-F2a
(8-iso-PGF2a) in a large group of SSc patients as compared

with healthy controls.
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MATERIALS AND METHODS
Inclusion criteria. We included consecutive patients with SSc who had

been hospitalized in the Rheumatology Department for systematic fol-

lowup. All patients were classified as having limited or diffused cutaneous

SSc according to LeRoy’s criteria17. The local ethics committee approved

the study, and all subjects gave written informed consent. Three months of

stable current treatment were necessary for inclusion, and prednisone use at

a dose of less than 10 mg/day was authorized. Vasodilators, including cal-

cium channel blockers and angiotensin-converting enzyme inhibitors, had

to be withdrawn at least 3 days before inclusion (corresponding to > 5 times

the drug half-life), as they were shown to decrease oxidative stress1. The

control group consisted of 39 healthy nonsmokers, matched for age and

sex.

Exclusion criteria. We excluded patients who could not stop vasodilator

therapy, as well as those who were pregnant or current smokers, or who had

diabetes, current treatment for dyslipidemia, or severe disease (e.g., car-

diac, hepatic failure, or gangrene).

Clinical assessment. Detailed information was collected in all participating

patients, including age, sex, cutaneous SSc subset as defined by LeRoy, et

al17, disease duration (date of first non-Raynaud’s symptom), skin involve-

ment according to the modified Rodnan skin score (mRSS)18, and history

of digital ulceration.

Laboratory assessments. Laboratory studies were obtained at baseline, on

the morning of hospital admission. They included complete blood cell

count, Westergren erythrocyte sedimentation rate (ESR, considered elevat-

ed above 28 mm/h), C-reactive protein level (CRP, considered elevated

above 10 mg/l), serum and urinary creatinine concentration, and tests for

antinuclear antibodies and anticentromere antibodies (both detected in

immunofluorescence on Hep2 cells) and antitopoisomerase I antibodies

(counter immunoelectrophoresis). von Willebrand factor antigen concen-

tration was determined by ELISA (VIDAS von Willebrand, BioMerieux,

Marcy l’Etoile, France).

Pulmonary and cardiac assessment. Pulmonary involvement was assessed

at baseline by chest radiography, computed tomography (CT), and meas-

urements of forced vital capacity (FVC) and the carbon monoxide diffusion

capacity/alveolar volume (DLCO/AV) ratio. Suspicion of pulmonary

hypertension was considered at baseline by Doppler echocardiography and

defined by systolic pulmonary arterial pressure (sPAP) > 40 mm Hg.

Confirmed pulmonary arterial hypertension (PAH) was defined as a resting

mean PAP ≥ 25 mm Hg with a pulmonary capillary wedge pressure of ≤ 15

mm Hg measured at right heart catheterization.

Composite scores. Disease activity was assessed according to the prelimi-

nary composite index proposed by the European Scleroderma Study Group,

and disease severity was assessed according to the Medsger severity

score19,20.

Sample acquisition. All the patients underwent urine collection at the same

time as physical examination and laboratory investigations. Urinary excre-

tion of 8-oxodG and isoprostane was evaluated from overnight urine col-

lection. The timing and total volume were recorded, and two 50-ml aliquots

were stored at –80°C until extraction.

8-oxodG competitive ELISA. Urine levels of 8-oxodG were measured using

a competitive ELISA (Bioxytech® 8-OxodG-EIA, Oxis International,

Beverly Hills, CA, USA). Concentrations were calculated using a standard

curve generated with specific standards provided by the manufacturer. The

analytical range was 0.125 to 200 ng/ml. Inter and intraassay coefficients

of variation were 2.1% and 4.5%, respectively. Urinary 8-oxodG concen-

tration was expressed as ng 8-oxodG/mg creatinine (creat).

8-iso-PGF2a competitive ELISA. Urine levels of 8-iso-PGF2a were meas-

ured using a competitive ELISA (Cayman Chemical, Ann Arbor, MI,

USA). Concentrations were calculated using a standard curve generated

with specific standards provided by the manufacturer. The EIA typically

displays an IC50 (50% B/B0) of about 10 pg/ml and a detection limit (80%

B/B0) of about 2.7 pg/ml. In our assay, analytical range extended from 0.8

to 500 pg/ml. Interassay and intraassay coefficients of variation were 9.5%

and 10.7%, respectively. Urinary 8-iso-PGF2a concentration was expressed

as ng 8-iso-PGF2a/mg creat.

Statistical analysis. All data are presented as median (range) for continuous

variables and numbers and percentages for categorical variables, unless

stated otherwise. Data were analyzed with the Mann-Whitney (unpaired

data) test. Spearman’s rank correlation test was used to assess the relation

between quantitative variables. A multiple linear regression analysis was

also performed for all variables identified with p ≤ 0.10 univariately. P val-

ues < 0.05 were considered significant.

RESULTS

Study population. We included 80 SSc patients, of whom 72

were women (90%), with a mean age of 56 ± 11 years and a

mean disease duration of 7 ± 6 years (disease duration was

< 5 yrs in 44 patients). All patients had Raynaud’s phenom-

enon, 39 had the diffuse cutaneous subset and 41 the limit-

ed subset (Table 1). No included patient was treated with

cyclophosphamide. The control group consisted of 39

patients, of whom 33 were women (85%), with a mean age

of 64 ± 8 years.

Levels of 8-oxodG and 8-iso-PGF2a in SSc patients com-

pared to controls. Urine levels of 8-oxodG/creat were found

to be higher in SSc patients than in controls (median 6.5

ng/mg, range 0.06–55.38 ng/mg vs median 3.7 ng/mg, range

0.10–10.41 ng/mg; p = 0.0001; Figure 1A). As expected,

urine levels of 8-iso-PGF2a/creat were also significantly

higher in SSc patients (median 11.4 ng/mg, range 2.7–56.9

ng/mg vs 4.2 ng/mg, range 0.7–9.2 ng/mg; p < 0.0001;

Figure 1B). In SSc patients, 8-oxodG/creat and 

8-iso-PGF2a/creat values were correlated (r = 0.32; p =

0.005; Figure 2).

Relationship between oxidative stress and age/gender in SSc

patients and controls. Urinary levels of 8-oxodG/creat and

8-iso-PGF2a/creat positively correlated with age in the con-

trol population (r = 0.35; p = 0.02 and r = 0.41; p = 0.03,

respectively). Conversely, no significant correlation with age

was found in the SSc population (r = 0.14; p = 0.4 and r =

0.11; p = 0.5, respectively). No association between oxida-

tive stress and gender was found in SSc patients and  controls.

Relationship between 8-oxodG levels and clinical features

(Table 2). There was no difference between patients with the

diffuse or limited cutaneous subset for the urinary values of

8-oxodG/creat (median 7.09 ng/mg, range 0.06–55.38

ng/mg vs median 2.74 ng/mg, range 0.10–45.71 ng/mg; 

p = 0.3).

In univariate analysis, SSc patients with disease duration

less than 5 years exhibited higher values of 8-oxodG/creat

versus patients with longer disease duration (median 8.83

ng/mg, range 0.16–43.25 ng/mg vs median 1.73 ng/mg,

range 0.06–55.38 ng/mg; p = 0.03). The likelihood of pul-

monary involvement, with pulmonary fibrosis on CT scan (p

= 0.01), decreased FVC < 75% predicted (p = 0.002), and

decreased DLCO/AV < 5% predicted (p = 0.003) was sig-

nificantly higher in patients with higher levels of
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8-oxodG/creat (Table 2). In multiple linear regression analy-

sis, pulmonary fibrosis on CT scan (p = 0.03), FVC < 75%

predicted (p = 0.04), and DLCO/AV < 75% predicted (p =

0.02) were independent factors associated with increased

urine 8-oxodG/creat levels.

Among patients with the diffuse cutaneous disease sub-

set, in univariate analysis, patients with higher

8-oxodG/creat levels were more likely to have shorter dis-

ease duration (median 8.49 ng/mg, range 0.16–43.25 ng/mg

vs median 1.73 ng/mg, range 0.06–55.38 ng/mg; p = 0.04),

mRSS > 14 (p = 0.02), decreased FVC (< 75% predicted; 

p = 0.04), and active disease according to the Valentini index

(p = 0.01). In multivariate analysis, only mRSS > 14 (p =

0.04) was independently associated with higher

8-oxodG/creat levels.

Patients with the limited cutaneous disease subset and

higher 8-oxodG/creat levels also exhibited decreased FVC,

< 75% predicted (p = 0.02). However, FVC was not inde-

pendently associated with 8-oxodG levels in multivariate

analysis performed on variables with p < 0.1 univariately.

Table 1. Clinical and biological characteristics of 80 patients with systemic sclerosis (SSc).

SSc Patients, Diffuse Limited

n = 80 Cutaneous Cutaneous

Characteristic Subset, n = 39 Subset, n = 41

Disease duration, yrs, mean ± SD 6.7 ± 6.0 5.4 ± 5.2 7.9 ± 6.4

Disease duration ≤ 5 yrs, n (%) 44 (55) 25 (64) 19 (46)

Modified Rodnan skin score, mean ± SD 8.8 ± 6.5 13.6 ± 6.2 4.5 ± 2.8

Modified Rodnan skin score > 14, n (%) 16 (20) 16 (41) 0 (0)

Digital ulcers, n (%) 24 (30) 13 (33) 11 (27)

sPAP > 40 mm Hg, n (%) 8 (10) 6 (15) 2 (5)

PAH on right heart catheterization 6 (8) 4 (10) 2 (5)

Pulmonary fibrosis on CT scan, n (%) 40 (50) 34 (87) 6 (15)

Erythrocyte sedimentation rate > 28 mm/h, n (%) 17 (21) 11 (28) 6 (15)

CRP > 10 mg/l, n (%) 14 (17.5) 10 (26) 4 (10)

von Willebrand antigen concentration, %, mean ± SD 157 ± 47 163 ± 68 149 ± 33

von Willebrand antigen concentration > 200%, n (%) 15 (19) 9 (23) 6 (15)

Positive antinuclear antibodies (> 1/160), n (%) 70 (87.5) 33 (85) 37 (90)

Positive anti-topoisomerase I antibodies, n (%) 25 (31) 25 (64) 0 (0)

Positive anticentromere antibodies, n (%) 21 (26) 0 (0) 21 (51)

Decreased FVC < 75% normal, n (%) 23 (29) 18 (46) 5 (12)

Decreased DLCO/VA < 75% normal, n (%) 33 (41) 20 (51) 13 (32)

Active disease (Valentini activity score ≥ 3), n (%) 35 (44) 29 (69) 6 (15)

Severe disease (Medsger severity score ≥ 3), n (%) 17 (21) 11 (28) 6 (15)

Treatment with calcium channel blockers, n (%) 80 (100) 39 (100) 41 (100)

Treatment with angiotensin-converting enzyme inhibitors, 

n (%) 34 (42) 22 (56) 12 (29)

Treatment with low-dose corticosteroids, n (%) 30 (38) 19 (49) 11 (27)

sPAP: systolic pulmonary artery pressure; PAH: pulmonary arterial hypertension; CRP: C-reactive protein; FVC:

forced vital capacity; DLCO/VA: decrease in carbon monoxide diffusion capacity divided by alveolar volume.

Figure 1. Levels of 8-oxodG and 8-iso-PGF2a in patients with SSc versus controls.
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Relationship between 8-iso-PGF2a levels and clinical

 features (Table 3). Patients with the diffuse cutaneous

 disease subtype had significantly higher values of 

8-iso-PGF2a/creat than patients with the limited cutaneous

subset (median 14.34 ng/mg, range 2.68–56.96 ng/mg vs

median 9.31, range 3.41–55.58 ng/mg). Consistently, the

likelihood of positive anticentromere antibodies was signif-

icantly lower in patients with increased 8-iso-PGF2a/creat

levels (p = 0.03). As for 8-oxodG, patients with higher 

8-iso-PGF2a levels were more likely to experience pul-

monary involvement, characterized by presence of pul-

monary fibrosis on CT scan (p = 0.02), decreased FVC (<

75% predicted; p = 0.002), and decreased DLCO/AV (<

75% predicted; p = 0.04). The likelihood of elevated sPAP

on echocardio graphy (> 40 mm Hg; p = 0.03) and increased

CRP levels (> 10 mg/l; p = 0.02) was significantly higher in

patients with increased levels of 8-iso-PGF2a/creat. In mul-

tiple regression analysis, decreased FVC < 75% predicted 

(p = 0.04) was the only independent factor associated with

increased 8-iso-PGF2a/creat levels.

Among patients with the diffuse cutaneous subset, in uni-

variate analysis, patients with elevated 8-iso-PGF2a/creat

levels were more likely to have PAH (p = 0.04), decreased

DLCO/AV (< 75% predicted; p = 0.03), and severe disease

according to the Medsger index (score > 2; p = 0.003). In

multivariate analysis, we did not identify any factor inde-

pendently associated with elevated 8-iso-PGF2a levels.

Patients with the limited cutaneous disease subset had no

factor associated with levels of 8-iso-PGF2a/creat.

DISCUSSION

Oxygen free radical damage has been suggested to play an

important role in SSc, and this is supported by considerable

evidence showing increased lipid peroxidation in this dis-

ease13,14,21,22. This contrasts with scarce data on the existence

of oxidative DNA damage23. Our results confirm the marked

trend towards oxidative stress in SSc and represent the first

report of the existence of high oxidative DNA damage in this

disease. Indeed, we found levels of urinary 8-oxodG, the most

abundant DNA lesion caused by ROS, that were significantly

higher in SSc patients than in the  control group. Moreover,

8-oxodG levels were positively correlated with lipid peroxi-

dation, assessed by urinary 8-iso-PGF2a levels. Our results

also showed a strong association in multivariate analysis

between urinary 8-oxodG  levels and a more fibrotic pheno-

type, at least for lung fibrosis.

The presence of high levels of urinary 8-oxodG that cor-

related with 8-iso-PGF2a is a first confirmation that SSc is

associated with marked oxidative stress. Whether these

events are involved in the pathogenesis of the disease or are

a consequence of tissue injury cannot be elucidated from our

results. However, since free radicals stimulate both fibro -

blast proliferation and vasospasm, a causal link between free

radical generation and SSc pathogenesis is strongly suspect-

ed. Unlike the association observed in healthy controls, uri-

nary 8-oxodG and 8-iso-PGF2a levels were independent of

the age of patients with SSc, indicating that the increase was

a reflection of oxidative damage associated with the disease

rather than a nonspecific aspect of aging.

Figure 2. Correlation between urinary levels of 8-oxodG and 8-iso-PGF2a in patients with SSc

(log transformation).
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Table 2. Associations between urinary 8-oxodG levels and clinical features.

SSc Patients

All, n = 80 Diffuse Cutaneous Subset, n = 39 Limited Cutaneous Subset, n = 41

Feature 8-OxodG/Creatinine, ng/mg, p 8-OxodG/Creatinine, ng/mg, p 8-OxodG/Creatinine, ng/mg p

median (range) median (range) median (range)

Skin

Modified Rodnan skin score

< 14 4.80 (0.06–31.06) 0.1† 1.39 (0.06–31.06) 0.02† NA* NA

> 14 10.30 (0.19–41.54) 10.30 (0.19–41.54)

Vascular involvement

Digital ulcers 3.88 (0.13–55.38) 0.6 8.49 (0.34–55.38) 0.08† 3.19 (0.13–33.96) 0.2

Present 6.45 (0.06–46.13) 1.73 (0.06–46.13) 7.89 (0.10–45.71)

Absent

Systolic pulmonary artery pressure

> 40 mm Hg 1.90 (0.34–14.18) 0.3 1.90 (0.54–14.18) 0.7 NA** NA

≤ 40 mm Hg 6.54 (0.06–55.38) 3.40 (0.06–55.38)

Pulmonary arterial hypertension

Present 5.18 (0.34–14.18) 0.5 6.40 (0.54–14.18) 0.5 NA** NA

Absent 5.22 (0.06–55.38) 2.72 (0.06–55.38)

Laboratory measures

Erythrocyte sedimentation rate

≥ 28 mm 6.54 (0.13–55.38) 0.7 3.69 (0.54–55.38) 0.2 7.91 (0.13–27.06) 0.7

< 28 mm 4.08 (0.06–45.71) 2.55 (0.06–43.25) 7.89 (0.10–45.71)

C-reactive protein

≥ 10 mg/l 1.73 (0.06–55.38) 0.2 1.19 (0.06–55.38) 0.5 2.26 (0.34–9.29) 0.3

< 10 mg/l 7.44 (0.1–45.71) 6.09 (0.16–43.25) 7.44 (0.10–45.71)

von Willebrand factor antigen

≥ 200% 9.96 (1.05–34.84) 0.2 19.96 (1.05–34.84) 0.3 8.71 (2.26–16.24) 0.7

< 200% 3.61 (0.13–46.13) 1.73 (0.19–46.13) 4.08 (0.42–28.78)

Antinuclear antibodies

Present 3.98 (0.10–55.38) 0.9 2.72 (0.16–55.38) 0.5 6.64 (0.1–45.71) 0.7

Absent 9.37 (0.06–31.06) 13.59 (0.06–31.06) 4.22 (0.42–27.06)

Antitopoisomerase antibodies

Present 7.09 (0.16–55.38) 0.2 6.12 (0.16–55.38) 0.5 NA*** NA

Absent 2.53 (0.06–45.71) 2.59 (0.06–43.25)

Anticentromere antibodies

Present 3.54 (0.13–45.71) 0.3 NA**** NA 4.43 (0.13–45.71) 0.2

Absent 8.80 (0.06–55.38) 11.06 (0.1–37.58)

Lung involvement

Pulmonary fibrosis on CT scan

Present 8.33 (0.06–55.38) 0.01† 8.85 (0.06–55.38) 0.08† 7.89 (0.20–37.58) 0.2

Absent 2.39 (0.1–45.71) 2.62 (0.19–41.54) 3.39 (0.10–45.71)

Forced vital capacity

< 75% 8.85 (0.16–55.38) 0.002† 8.82 (0.16–55.38) 0.04† 9.29 (0.10–32.29) 0.02†

≥ 75% 1.73 (0.10–45.71) 1.73 (0.19–43.25) 0.34 (0.10–45.71)

DLCO/AV

< 75% 11.31 (0.16–55.38) 0.003† 10.57 (0.16–55.38) 0.07† 14.90 (0.34–37.12) 0.1†

≥ 75% 3.06 (0.10–38.45) 2.39 (0.19–16.38) 6.65 (0.1–38.45)

Composite indexes

Active disease (Valentini)

Yes (≥ 3) 8.67 (0.16–55.38) 0.5 8.85 (0.16–55.38) 0.01† 4.95 (0.2–37.12) 0.6

No (< 3) 4.08 (0.06–45.71) 0.92 (0.06–15.86) 6.32 (0.10–45.71)

Severe disease (Medsger)

Yes (> 2) 2.5 (0.06–43.25) 0.3 0.80 (0.06–16.38) 0.06† 10.18 (0.34–28.78) 0.9

No (≤ 2) 6.45 (0.10–55.38) 3.54 (0.16–55.38) 6.64 (0.10–45.71)

† Variables included in multiple linear regression analysis. Comparison was not possible as: * no patient with the limited cutaneous subset had mRSS > 14;

** only 2 patients had sPAP > 40 or PAH and the limited cutaneous subtype. *** no patient with limited cutaneous SSc had antitopoisomerase-1 antibodies;

**** only one patient had diffuse cutaneous SSc and anticentromere antibodies. NA: not applicable. Significant values appear in bold type.
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Table 3. Associations between urinary 8-iso-PGF2a levels and clinical features.

SSc Patients

All, n = 80 Diffuse Cutaneous Subset, n = 39 Limited Cutaneous Subset, n = 41

Feature 8-OxodG/Creatinine, ng/mg, 8-OxodG/Creatinine, ng/mg, 8-OxodG/Creatinine, ng/mg

median (range) p median (range) p median (range) p

Skin

Modified Rodnan skin score

< 14 9.89 (3.62–43.93) 0.5 9.89 (3.62–43.93) 0.6 NA* NA

> 14 12.30 (2.68–56.96) 9.92 (2.68–56.96)

Vascular involvement

Digital ulcers

Present 12.91 (2.68–56.96) 0.6 10.45 (2.68–56.96) 0.2 14.25 (3.41–25.83) 0.2

Absent 9.90 (2.96–55.58) 9.22 (2.96–36.06) 16.80 (4.54–55.58)

Systolic pulmonary artery pressure

> 40 mm Hg 13.10 (2.68–56.96) 0.03† 12.06 (2.68–56.96) 0.04† NA** NA

≤ 40 mm Hg 6.85 (2.96–36.14) 5.18 (2.96–9.34)

Pulmonary arterial hypertension 

Present 12.79 (2.68–56.96) 0.1† 10.95 (2.68–56.96) 0.04† NA** NA

Absent 6.85 (2.96–36.14) 5.06 (2.96–8.53)

Laboratory measures

Erythrocyte sedimentation rate

≥ 28 mm 12.79 (2.68–56.96) 0.4 9.89 (2.68–56.96) 0.9 15.46 (3.41–55.58) 0.5

< 28 mm 9.29 (2.96–43.93) 9.29 (2.96–43.93) 11.42 (4.54–36.14)

C-reactive protein

≥ 10 mg/l 13.82 (3.34–56.96) 0.02† 11.44 (3.34–56.96) 0.2 15.25 (3.41–55.58) 0.8

< 10 mg/l 8.79 (2.68–36.14) 8.53 (2.68–15.39) 9.04 (8.54–36.14)

von Willebrand factor antigen

≥ 200% 13.39 (3.34–56.96) 0.4 11.87 (3.34–56.96) 0.6 15.25 (4.54–28.31) 0.9

< 200% 9.22 (3.62–26.76) 9.22 (3.62–14.85) 14.00 (6.25–26.76)

Antinuclear antibodies

Present 12.18 (2.96–56.96) 0.5 9.31 (2.96–56.96) 0.4 14.84 (3.41–55.58) 0.8

Absent 10.68 (2.68–15.77) 7.24 (2.68–14.85) 12.58 (10.32–15.77)

Antitopoisomerase antibodies

Present 13.45 (2.68–55.58) 0.06† 11.56 (2.68–36.06) 0.7 NA*** NA

Absent 8.76 (2.96–56.96) 9.25 (2.96–56.96)

Anticentromere antibodies

Present 9.90 (2.68–56.96) 0.03† NA**** NA 9.90 (3.41–19.05) 0.06

Absent 16.94 (4.15–55.58) 18.20 (4.15–55.58)

Lung involvement

Pulmonary fibrosis on CT scan

Present 15.25 (3.41–55.58) 0.02† 13.29 (5.47–36.06) 0.3 15.72 (3.41–55.58) 0.1

Absent 9.29 (2.68–56.96) 9.22 (2.68–56.96) 10.10 (6.25–14.25)

Forced vital capacity

< 75% 13.61 (3.34 –55.58) 0.002† 10.45 (3.34–43.93) 0.6 15.67 (3.41–55.58) 0.05

≥ 75% 8.53 (2.96–56.96) 8.53 (2.96–56.96) 8.54 (6.25–13.60)

DLCO/AV

< 75% 14.07 (3.41–55.58) 0.04† 13.61 (5.47–36.06) 0.03† 14.43 (3.41–55.58) 0.8

≥ 75% 9.29 (2.96–56.96) 6.99 (2.96–56.96) 15.25 (4.15–36.14)

Composite indexes

Active disease (Valentini)

Yes (≥ 3) 12.49 (2.68–56.96) 0.5 9.34 (2.68–56.96) 0.5 14.43 (3.41–55.58) 0.8

No (< 3) 11.44 (2.96–43.93) 8.31 (2.96–43.93) 13.91 (8.54–36.14)

Severe disease (Medsger)

Yes (> 2) 13.39 (3.34–56.96) 0.08† 13.29 (3.34–56.96) 0.003† 16.76 (9.90–36.14) 0.4

No (≤ 2) 8.53 (2.68–36.14) 5.69 (2.68–12.67) 13.93 (3.41–55.58)

† Variables included in multiple linear regression analysis. Comparison was not possible as: * no patient with the limited cutaneous subset had mRSS > 14;

** only 2 patients had sPAP > 40 or PAH and the limited cutaneous subtype; *** no patient with limited cutaneous SSc had antitopoisomerase-1 antibodies;

**** only one patient had the diffuse cutaneous SSc and anticentromere antibodies. NA: not applicable. Significant values appear in bold type.
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Recent data have shown that selective oxidation of DNA

topoisomerase-I induced skin and lung fibrosis in mice,

which support that DNA oxidative damage may dictate the

subset of SSc24. In the present study, levels of 8-oxodG were

higher in patients with the diffuse cutaneous disease subset,

but this result did not reach statistical significance. Thus,

DNA damage measurement cannot be used to adequately dis-

criminate between these 2 subsets of SSc, as suggested12,13.

Further studies are also needed to assess the influence of

oxidative stress on the perturbation of the immune system in

SSc, especially on the production of autoantibodies.

We found a clear association in multivariate analysis

between oxidative stress and interstitial lung involvement.

This was particularly true for 8-oxodG. Previous studies

have failed to find a correlation between lipid peroxidation,

assessed by urinary 8-iso-PGF2a levels, and pulmonary

fibrosis12,13. These studies were performed on a small sam-

ple and detected lung involvement only on chest radio -

graphs, which may have accounted for the different results.

However, it is noteworthy that one of these studies showed

that 8-iso-PGF2a levels correlated with DLCO and with a

more severe lung involvement, as assessed by the lung

severity assessment score13.

Although oxidative damage is associated with microvas-

cular dysfunction25 and is known to contribute to abnormal-

ities of vascular remodeling and angiogenesis26, we failed to

find an association between oxidative stress and clinical or

biological markers of SSc-related vasculopathy. This may

be partly explained by the low number of patients in our

study with digital ulcers, increased sPAP, or increased von

Willebrand factor. Further studies with adequate sample size

are thus required to explore this association.

The occurrence of DNA damage in autoimmune diseases,

especially in SSc, has not been assessed precisely. One

study showed increased 8-oxodG and increased susceptibil-

ity to cytotoxic killing by hydrogen peroxide in lympho-

cytes from patients with different autoimmune diseases23.

Another recent study found a strong expression of 8-oxodG

around synovial tissue in patients with rheumatoid arthri-

tis27,28,29. In SSc, no data are available, but indirect evi-

dence may suggest a contribution of DNA damage for

development of fibrosis. First, higher urinary 8-oxodG

 levels were more frequently found in a subgroup of patients

with a more fibrotic phenotype, and who were characterized

by higher mRSS and presence of symptomatic interstitial

lung involvement. Second, a close relationship between

oxidative DNA damages and epigenetic modifications has

been highlighted, especially in some models of cancer30. In

SSc, recent evidence has emerged on the role of epigenetic

alterations in the promotion of fibrosis, but further studies in

SSc are needed to assess if these epigenetic modifications

leading to fibrosis are related to increased DNA damage

induced by oxidative stress31. Oxidative damage to DNA is

important in mutagenesis and carcinogenesis32,33. Experi -

mental studies in vitro and in animals show that malignant

cells contain high levels of oxidized DNA lesion. In

humans, elevated 8-oxodG levels have been detected in var-

ious tumors, especially in breast, prostate, bladder, and

small-cell lung cancer16,34,35,36. Thus, urinary 8-oxodG is

considered a useful indicator of cancer risk, even though

there is no direct evidence linking oxidative DNA modifica-

tion to cancer.

In SSc, the link with cancer seems not overwhelming, but

recent evidence suggests a modest increase in risk, with

standardized incidence ratios ranging from 0.75 to 2.7337.

The incidence of malignancy ranges from 3.6% to 10.7%,

with a weighted average of 6.3% across the largest studies

reported37. Lung and breast cancer are the most frequently

reported types of malignancy. No unifying mechanism has

established a direct link between SSc and cancer risk.

Although some risk factors have been identified, no predic-

tor of cancer risk in SSc is available37,38. Thus, the predic-

tive value of 8-oxodG for the risk of cancer in SSc patients

should be determined, regarding increased risk of cancer

and high levels of 8-oxodG in SSc patients. 

Limitations of our study that merit consideration include

its observational design; moreover, any pathogenic link

emerging from this type of study should be considered cau-

tiously. Our sample size was too limited to adequately assess

disease phenotype associations in specific subsets of

patients, especially those with peripheral or pulmonary vas-

culopathy. The range of 8-oxodG values was broad in both

SSc patients and controls, which may reflect their succes-

sive recruitment, and thus the absence of selection criteria.

The values of 8-iso-PGF2a reported here were higher than

those previously published. The method of measurement

may account for such discrepancies, as we used a competi-

tive ELISA whereas others used chromatography12,13. It is

noteworthy that the levels found in the control group were

within the manufacturer’s determined threshold; and the

fold increase observed in the patient groups was close to that

of a previous report13. It was not possible to consider nail-

fold videocapillaroscopy in our study because, in a signifi-

cant number of cases, this examination was not performed at

the same time as the measurements of urine concentrations

of 8-oxodG and 8-iso-PGF2a. It was also not possible to

assess the relationship between 8-oxodG and cancer in our

population.

Our results confirm the striking association between SSc

and oxidative stress, targeting lipids and nucleic acids. Our

study is the first to report high oxidative DNA damage in

SSc, reflected by increased urinary 8-oxodG levels. As this

marker is considered a useful indicator of cancer risk, fur-

ther investigations are warranted to assess the predictive

value of 8-oxodG as a cancer predictor in SSc, a disease

characterized by increased frequency of cancer.

Increased levels of this 8-oxodG were more likely to be

found in patients with a high degree of skin fibrotic extension
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and with interstitial lung involvement, supporting the potential

contribution of oxidative DNA damage in fibrosis. Functional

analyses are now needed to confirm this hypothesis.
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