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Elevation of Serum Lymphotactin Levels in Patients
with Systemic Sclerosis
EIJI MUROI, FUMIHIDE OGAWA, KAZUHIRO SHIMIZU, KAZUHIRO KOMURA, MINORU HASEGAWA,
MANABU FUJIMOTO, and SHINICHI SATO

ABSTRACT. Objective. To determine serum concentrations of lymphotactin, a Th1 chemokine, and their clinical
association in patients with systemic sclerosis (SSc).
Methods. Lymphotactin levels were examined in serum samples from patients with SSc (n = 68),
systemic lupus erythematosus (SLE; n = 42), or dermatomyositis (DM; n = 29), and healthy controls
(n = 18) by enzyme linked immunosorbent assay.
Results. Serum lymphotactin levels were significantly elevated in SSc patients compared to patients
with SLE or DM as well as controls. Serum lymphotactin levels were similar in patients with limit-
ed cutaneous SSc and diffuse cutaneous SSc (dSSc). Clinical correlation of elevated lymphotactin
levels was not detected in the total group of patients with SSc, while elevation of lymphotactin lev-
els was significantly associated with higher percentage vital capacity and percentage diffusing
capacity of carbon monoxide, lower lung severity grade and serum IgG levels, and less frequent
presence of short sublingual frenulum in patients with dSSc.
Conclusion. Our results indicate that elevated serum lymphotactin levels correlate with relatively
milder manifestations in dSSc, especially lower severity of lung involvement, suggesting that lym-
photactin may play a role in the development of dSSc. (First Release Mar 1 2008; J Rheumatol
2008;35:834–8)
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Systemic sclerosis (SSc) is a multisystem disorder of con-
nective tissue characterized by excessive fibrosis and vascu-
lar changes in the skin and various internal organs, such as
the lungs, kidneys, esophagus, and heart. Although the
pathogenesis of SSc remains unknown, it has been suggest-
ed that immunological abnormalities have a critical role1-3.
Most of the infiltrating cells in the skin of patients with SSc
are activated T lymphocytes with a predominant CD4+ phe-
notype4. Hyperactivity of circulating CD4+ T cells has also
been detected in patients with SSc5. Cytokines play a major
role in regulating extracellular matrix deposition by fibrob-
lasts6. Stimulated naive T cells then differentiate into mem-
ory/effector T cells that are classified into T helper 1 (Th1)

and Th2 subsets based on their profiles of cytokine produc-
tion7. Imbalance between Th1 and Th2 immune responses is
considered to play an important role in autoimmune and
allergic diseases8,9. Although Th1/Th2 imbalance in SSc
appears to be complicated, accumulating evidence has
shown that SSc is generally a Th2-dominant autoimmune
disease, especially in the early phase of the disease10-12. It
has been reported that serum concentrations of Th2
cytokines, such as interleukin 4 (IL-4), IL-6, IL-10, and IL-
13, were increased in patients with SSc10,11,13. Th2 cytokine
production by stimulated peripheral blood lymphocytes was
also elevated in SSc13. Further, patients with SSc exhibited
Th2 cytokine production by cultured CD4+ T cells isolated
from skin lesions14.

Lymphotactin15 was independently detected by 3 groups
and denoted with 2 different names: single C motif 116 and
activation-induced, T cell–derived, and chemokine-related
molecule17. This chemokine is structurally related to the CC
chemokine subfamily that lacks the first and third cysteine
residues, and it is thus considered to represent the C
chemokine subfamily. Lymphotactin is selectively
expressed in activated CD8+ T cells and in a small propor-
tion of activated CD4+ T cells17, thymocytes15, intraepithe-
lial T cells18, mast cells19, and natural killer (NK) cells20.
Lymphotactin acts via a unique G protein–coupled receptor
XCR121,22. The full spectrum of biologic functions of lym-
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photactin is still unknown, but the functional properties that
have been detected include chemotactic activity for both
CD4+ and CD8+ T cells23,24 and induction of migratory
responses in NK cells after activation with IL-225.
Moreover, a recent study using a murine model of listeriosis
has shown that lymphotactin, macrophage inflammatory
protein 1α and 1ß, and regulated on activation, normal T cell
expressed and secreted (RANTES) are cosecreted with
interferon-γ (IFN-γ) by activated NK cells, CD8+ T cells,
and CD4+ Th1 cells, and function as Th1 cytokines by
upregulating CD40, IL-12, and tumor necrosis factor by
macrophages26.

Lymphotactin expression has been studied in several
clinical and experimental models of inflammatory diseases,
such as acute allograft rejection27,28, autoimmune diabetes29,
encephalomyelitis30, experimental crescentic glomeru-
lonephritis31, chronic inflammatory bowel disease32, and
rheumatoid arthritis33. Results of these studies support the
concept of a potential role of lymphotactin in Th1-type
inflammatory processes. To evaluate a role of lymphotactin
in the development of SSc, we investigated lymphotactin lev-
els in serum samples and their clinical correlation.

MATERIALS AND METHODS
Patients and samples. Serum samples were obtained from 68 Japanese
patients with SSc (58 women, 10 men). All patients fulfilled the criteria
proposed by the American College of Rheumatology34. Patients were
grouped according to the classification system proposed by LeRoy, et al35:
37 patients (29 women, 8 men) had diffuse cutaneous SSc (dSSc) and 31
(29 women, 2 men) had limited cutaneous SSc (lSSc). The age of patients
with SSc (mean ± SD) was 49.4 ± 16.8 years old. Patients with dSSc were
43.3 ± 15.6 years old, while those with lSSc were 57 ± 9.4 years old. The
disease duration of patients with dSSc and lSSc was 3.61 ± 4.28 and 9.24
± 9.62 years, respectively. Antinuclear antibody (ANA) was determined by
indirect immunofluorescence and autoantibody specificities were further
assessed by enzyme linked immunosorbent assay (ELISA) and immuno-
precipitation. Anticentromere antibody was positive in 21 patients, anti-
topoisomerase-1 antibody in 24, anti-U1RNP in 5, anti-U3RNP in 2, anti-
RNA polymerases I and III in 3, and Th/To in 1. Seven patients had ANA;
however, their specificities were not identified. The remaining 5 patients
were negative for autoantibody. Forty-two patients with systemic lupus ery-
thematosus (SLE), who fulfilled American College of Rheumatology crite-
ria36, were examined as disease controls. In addition, 29 patients with der-
matomyositis (DM) that fulfilled the Bohan and Peter criteria37,38 were
included as disease controls. Eighteen age- and sex-matched Japanese
healthy individuals were used as normal controls. Fresh venous blood sam-
ples were centrifuged shortly after clot formation. All samples were
obtained before treatment and stored at –70°C prior to use. The protocol
was approved by the Kanazawa University Graduate School of Medical
Science and Kanazawa University Hospital, and informed consent was
obtained from all patients.

Clinical assessment. Complete medical histories, examinations, and labo-
ratory tests were conducted for all patients at their first visit. Skin score was
measured with the modified Rodnan total skin thickness score39. Organ
involvement was defined as described40: lung = bibasilar fibrosis on chest
radiography and high resolution computed tomography; esophagus = hypo-
motility by barium radiography; joint = inflammatory polyarthralgias or
arthritis; heart = pericarditis, congestive heart failure, or arrhythmias
requiring treatment; and muscle = proximal muscle weakness and elevated
serum creatinine kinase. Since there were no definite criteria regarding the

length of short sublingual frenulum, it was defined as white and hyper-
trophic sublingual frenulum. Isolated pulmonary hypertension was defined
as clinical evidence of pulmonary hypertension and increased systolic pul-
monary arterial pressure (> 35 mm Hg) by Doppler echocardiography, in
the absence of severe pulmonary interstitial fibrosis. Pulmonary function
testing, including vital capacity (VC) and diffusion capacity for carbon
monoxide (DLCO), was conducted to evaluate the severity of lung involve-
ment. When the DLCO and VC were < 75% and < 80%, respectively, of the
predicted normal values, they were considered to be abnormal. SSc patients
with a smoking habit or other respiratory disorders, which could have
affected %DLCO or %VC, were excluded. The lung severity was graded
using the lung severity scale in SSc41.

ELISA for lymphotactin. Specific ELISA kits were used for measuring
serum lymphotactin levels (R&D Systems, Minneapolis, MN, USA),
according to the manufacturer’s protocol. Each sample was tested in dupli-
cate. The detection limit of this assay was 62.5 pg/ml.

Statistical analysis. The Mann-Whitney U-test was used to compare lym-
photactin levels, Fisher’s exact probability test to compare frequencies, and
Bonferroni’s test for multiple comparisons. Spearman’s rank correlation
coefficient was used to examine the relationship between 2 continuous vari-
ables. All p values less than 0.05 were considered statistically significant.

RESULTS
Serum lymphotactin levels in SSc. Serum levels of lympho-
tactin in patients with SSc and healthy controls are shown in
Figure 1. For comparison, patients with DM or SLE were
included. Serum lymphotactin levels were significantly ele-
vated in total patients with SSc (median 3.28 ng/ml, range
2.88–3.85) compared with healthy controls (median 2.71,
range 2.09–3.28; p < 0.0001), patients with SLE (median
2.58, range 1.99–3.06; p < 0.0001), and patients with DM
(median 2.78, range 2.36–3.44; p < 0.0001). Lymphotactin
levels in patients with SLE or DM were similar to those in
healthy controls; however, lymphotactin levels in patients
with SLE were significantly decreased relative to those in
patients with DM (p < 0.0001). As for subgroups of SSc,
lymphotactin levels in patients with lSSc (median 3.23
ng/ml, range 2.88–3.79) and dSSc (median 3.39, range
2.93–3.85) were significantly higher than those in normal
controls (p < 0.0001 and p < 0.0001, respectively), in
patients with SLE (p < 0.0001 and p < 0.0001), and in
patients with DM (p < 0.0001 and p < 0.0001). No signifi-
cant difference between patients with lSSc and those with
dSSc was observed in serum lymphotactin levels. Thus, ele-
vated serum lymphotactin levels were specific to patients
with SSc.

Clinical correlation. Values higher than the mean + 2 SD
(3.45 ng/ml) of the control serum samples were considered
to be elevated in our study. Elevated lymphotactin levels
were observed in 37% (25/68) of total patients with SSc, in
41% (15/37) of patients with dSSc, and in 32% (10/31) of
patients with lSSc. By contrast, elevated lymphotactin levels
were not detected in any patients with SLE or DM or any
healthy individuals.

In total patients with SSc, no clinical correlation of ele-
vated lymphotactin levels was detected. Then we examined
their clinical correlation in patients with dSSc. As shown in
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Table 1, %VC and %DLCO in dSSc patients with elevated
lymphotactin levels were significantly higher than in those
with normal lymphotactin levels (p < 0.05 and p < 0.05,
respectively). The lung severity grades in dSSc patients with
elevated lymphotactin levels (median 1, range 0–2) were
significantly lower than in those with normal lymphotactin
levels (median 2, range 0–3; p < 0.05). In addition, dSSc
patients with elevated lymphotactin levels had short sublin-
gual frenulum less frequently than those with normal lym-
photactin levels (36% vs 73%; p < 0.05). Serum IgG levels
in dSSc patients with elevated lymphotactin levels were sig-
nificantly decreased compared to those with normal lym-
photactin levels (p < 0.05). Further, lymphotactin levels cor-
related negatively with serum IgG levels in patients with
dSSc (r = –0.357, p < 0.05). To determine correlation of
serum lymphotactin levels with disease activity, we tried to
analyze lymphotactin levels between dSSc patients with < 3
years disease duration and those with disease duration > 3
years, and between lSSc patients with < 9 years disease

duration and those with disease duration > 9 years.
However, we did not observe any significant difference (data
not shown). Thus, elevated lymphotactin levels were associ-
ated with the lower severity of lung involvement, lower
prevalence of short sublingual frenulum, and decreased
serum IgG levels. By contrast, no clinical correlation of ele-
vated lymphotactin levels was detected in patients with
lSSc.

DISCUSSION
In our study, serum lymphotactin levels were significantly
elevated in SSc patients compared with normal controls. The
elevation of lymphotactin levels was specific to patients
with SSc, since lymphotactin levels in SLE or DM patients
were similar to those found in normal controls. The eleva-
tion of serum lymphotactin levels was associated with high-
er %VC and %DLCO, lower lung severity grade and fre-
quency of short sublingual frenulum, and lower serum IgG
levels in patients with dSSc, suggesting that elevated lym-

Figure 1. Levels of lymphotactin in serum samples from patients with dSSc, lSSc, SLE, and
DM and normal controls (CTL). Serum lymphotactin levels were determined by ELISA.
Horizontal lines show mean values. Broken line indicates the cutoff value (mean + 2 SD of the
control samples).
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photactin levels are related to relatively milder manifesta-
tions, especially lower severity of lung involvement, in
dSSc.

Lymphotactin is produced mainly by activated T cells
and NK cells, and its biological functions as well as its
pathological roles remain to be elucidated. Lymphotactin
has been reported to be induced by stimulation through T-
cell receptors in Th1 cells, but not in Th2 cells, and cose-
creted to a high degree with IFN-γ by activated Th1 cells2,26.
Thus, lymphotactin is a chemokine related to Th1 immune
responses. In general, Th1 cells producing IFN-γ and IL-12
limit the development of tissue fibrosis, whereas Th2 cells
producing IL-4 and IL-13 exaggerate tissue fibrosis42-44.
Further, a recent study has shown that a shift from Th2 to
Th1 response correlates with improvement of skin fibrosis
in dSSc during the disease course12. Collectively, correla-
tion of lymphotactin levels with milder manifestation in
patients with SSc may be mediated by its Th1 activity.
However, IFN-γ, a Th1 cytokine, is not detected in the sera
from patients with SSc even at the later, regression stage of
skin fibrosis12. This finding was not consistent with a shift
to a Th1 profile at the later stage. However, serum IL-12 lev-
els were increased and correlated with the later, regression
stage of skin fibrosis in SSc. Although the reasons for this
discrepancy remain unknown, SSc appeared to exhibit the
activation of some Th1 cytokines, at least IL-12, at the later
phase of the disease. Alternatively, we recently found that

serum levels of IL-23, an important cytokine for inducing
Th17 cells, were elevated in patients with SSc (unpublished
data). This suggests that the activation of Th17 may affect
IFN-γ production and influence fibrosis in SSc, since IL-23
or IL-17 can suppress Th1 cell differentiation in the pres-
ence of IL-1245. Thus, cytokine activation and its associa-
tion with the disease activity may be complicated in SSc.

In our study, the disease duration and extent of skin fibro-
sis were similar between both lSSc and dSSc patients with
elevated lymphotactin levels and those with normal levels,
suggesting that unlike serum IL-12 levels, lymphotactin is
not associated with the improvement of skin fibrosis.
Moreover, there was no significant difference in lympho-
tactin levels between dSSc patients with < 3 years disease
duration and those with disease duration > 3 years. This
finding suggests that induction of lymphotactin is not relat-
ed to the later, stable phase of less disease activity. However,
lack of association of lymphotactin levels with the disease
activity might be due to the heterogeneity of the timepoint
when the immune response shifts to Th1. To address the cor-
relation of lymphotactin levels with disease activity and Th1
response, a prospective longitudinal study of serum lym-
photactin levels in SSc will be required.
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