Trichostatin A Cooperates with Fas-Mediated Signal to
Induce Apoptosis in Rheumatoid Arthritis Synovial
Fibroblasts
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ABSTRACT. Objective. To clarify the effects of trichostatin A (TSA), a histone deacetylase inhibitor, on the growth
and survival of rheumatoid arthritis synovial fibroblasts (RA-SF).
Methods. Cell viability was assessed using a WST-8 assay and direct cell counting. Apoptosis was
detected by annexin V staining on a flow cytometer. Protein and mRNA expression was determined by
Western blotting, flow cytometry, and RT-PCR.
Results. TSA suppressed cell growth of RA-SF in a dose-dependent manner, as determined by WST-8
assay and direct cell counting. Other histone deacetylase inhibitors also showed inhibitory effects on
RA-SF proliferation. TSA upregulated p21WAFI/CIPT ce]] cycle inhibitor, suggesting that cell cycle arrest
is involved in the reduction of cell numbers. In addition, TSA cooperated with Fas-induced pathway to
induce cell death, determined by WST-8 assay and annexin V staining. TSA reduced FLICE inhibitory
protein (FLIP) expression but not Bcl-2, Bel-X; , and Fas expression, indicating that the synergistic
effect may be through downregulation of FLIP.
Conclusion. TSA has antirheumatic effects on RA-SF and might be a potential therapeutic tool for the
treatment of RA. (J Rheumatol 2006;33:1052-60)
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Rheumatoid arthritis (RA) is the most common form of chron-
ic inflammatory arthritis, leading to the progressive destruc-
tion of the joints. Synovitis plays a central role in the patho-
physiology of the disease!2. Recent evidence shows that RA
synovial fibroblasts (RA-SF) play a major role in initiating
and driving RA3. RA-SF not only respond to cytokine stimuli,
but also proliferate and actively contribute to joint destruction.
RA-SF have anchorage-independent proliferation and loss of
contact inhibition in vitro and can attach to and invade the
articular cartilage3. It is well established that RA-SF, espe-
cially those in the lining layer, produce matrix metallopro-
teinase (MMP) and thus contribute to joint destruction’.
Moreover, RA-SF affect other types of cells. RA-SF promote
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osteoclast differentiation by activating T cells and/or by
expressing receptor activator of nuclear factor-xB (NF-xB)
ligand (RANKL) on their surface®. RA-SF also prevent T and
B cells from apoptosis through direct cellular interactions’-®.
Thus RA-SF, as well as immune cells, are key components of
the joint destruction of RA.

One of the most important properties of RA-SF is defective
apoptosis, which may explain the massive hyperplasia of RA
synovium. Thus induction of apoptosis seems to be a promis-
ing therapeutic tool for the treatment of RA®. Although some
RA-SF are susceptible to Fas-induced apoptosis, the majority
are thought to be resistant to apoptosis through this pathway?.
Several reports indicated that stable activation and/or impaired
apoptosis of RA-SF may be explained by altered expression
and specific activation of disease-relevant genes. For example,
both AP-1 and NF-xB proteins are activated in RA-SF and are
probably involved in MMP gene expression!%!!, Increased
proliferation and/or defective apoptosis of RA-SF could be
due to enhanced expression of Bcl-2, activation of NF-xB,
overexpression of c-myc, somatic mutations of p53, overex-
pression of small ubiquitin-related modifier (SUMO)-1, and
lack of phosphatase with tensin homology expression'2-17.
Exactly how and to what extent each molecule is involved in
the altered functions of RA-SF still remains to be elucidated.

Modifications of histone tails have been shown to affect
regulation of gene expression'®. One of those modifications is
histone acetylation, which is balanced by histone acety] trans-
ferases and histone deacetylases (HDAC). HDAC inhibitors
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(HDAC:) induce histone acetylation by suppressing HDAC.
The drugs have been found to induce cell cycle arrest, apop-
tosis, and differentiation of many tumor cell lines. In contrast,
normal cells survive, although their histones are acetylated to
the same extent. Thus HDACi are among the most promising
anti-tumor drugs and have been evaluated in clinical tri-
als'®20, HDACi induce cyclin E and cell cycle inhibitors such
as p21 WAFICIPL - 5 7KIPT “and p16NK4  and reduce cyclins A
and D. They also have been reported to affect apoptosis-relat-
ed molecules, inducing Fas and FasL and repressing Bcl-2 and
BCI-XL20. These alterations of gene expression profile explain
the action of HDAC: to repress tumor cell growth in vitro and
in vivo. Also, upregulation of MHC and downregulation of
hypoxia-inducible factor-o. (HIF-ot) genes may contribute to
tumor suppression by altering immunogenicity and angiogen-
esis, indicating diverse actions of HDACi to repress tumor
growth in vivo?-22,

Recently, in vivo effects of HDACI in the treatment of
autoimmune disease models have been reported.
Phenylbutylate and trichostatin A (TSA) upregulated
p2 1 WAFICIPT and p16™NK4, downregulated tumor necrosis fac-
tor-a. (TNF-ar), and reduced cell infiltration and hyperplasia,
resulting in no cartilage and bone destruction in animal mod-
els of arthritis?>?*, To further understand the effects of
HDAC:i on RA-SF, we investigated the mechanisms of action
of TSA in vitro. We report that TSA induces apoptosis and
augments Fas-mediated apoptosis in RA-SF.

MATERIALS and METHODS

Reagents. TSA was purchased from Sigma (St. Louis, MO, USA) and dis-
solved in ethanol. Sodium butylate, valproic acid, and suberoylanilide
hydroxamic acid (SAHA) were purchased from Wako Pure Chemical
Industries, Ltd., Osaka, Japan. Platelet derived growth factor (PDGF) was
from R&D. Caspase inhibitors VAD-FMK and IETD-FMK were purchased
from MBL Co. Ltd. (Nagoya, Japan). Anti-p21 antibody was purchased from
BD Biosciences (Lexington, KY, USA). Anti-p27, anti-p53, anti-Bcl-2, anti-
Bcl-X; , and anti-FLIP (FLICE inhibitory protein) antibody were from Santa
Cruz Biotechnology Inc. (Santa Cruz, CA, USA). Anti-acetyl-p53 was from
Cell Signaling Technology Inc. (Beverly, MA, USA). Anti-B-actin antibody
was from Sigma. Horseradish peroxidase (HRP) conjugated secondary anti-
bodies were from Zymed Laboratory (San Francisco, CA, USA).

Cell culture. Synovial tissue samples were obtained from patients with RA
who received joint replacement surgery. All patients fulfilled the American
College of Rheumatology 1987 criteria?®. The collected tissues were minced
and incubated with 4 mg/ml collagenase, and then with 0.05% trypsin (Difco,
Detroit, MI, USA) as described?®. The isolated cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal
calf serum, streptomycin/penicillin (Gibco), and non-essential amino acid
(Gibco). Adherent cells were used after 2-5 passages of RA-SF for the exper-
iments.

Cell viability assay. Cell viability was assessed using WST-8 (Dojindo,
Kumamoto, Japan), a reagent similar to XTT and MTT with higher assay sen-
sitivity. Cells were plated in 96-well plates (3 x 10 cells/well) 2 days prior to
the experiments and incubated in the presence of indicated doses of reagents.
The wells were pulsed with WST-8 for 3—4 h incubation, and optical density
was measured at 450 nm with a microplate reader (Bio-Rad, Hercules, CA,
USA) to determine cell viability. The results were expressed as mean + SD of
4 wells.

Viable cell counting. Cells were also counted under a light microscope. Cells

(3 x 10* cells/S00 pl/well) were cultured in 24-well plates in the presence of
indicated concentrations of TSA. Nonadherent cells were removed, and
adherent cells were washed once with phosphate buffered saline (PBS) and
treated with Trypsin-EDTA (Gibco) for counting.

Apoptosis assay. For the double-staining with Annexin V and PI, cells were
harvested, washed once with PBS, and then incubated with Annexin V-FITC
and PI (MBL) in darkness for 30 min. Samples were then analyzed on a
FACScan.

Flow cytometry. Harvested cells were stained with FITC-conjugated anti-Fas
(clone UB2, MBL) or control antibodies in PBS containing 2% fetal calf
serum for 30 min, washed twice, and suspended in PBS. Surface expression
of Fas molecule was analyzed on a FACScan.

Western blotting. Cells were collected and lysed in lysis buffer [SO mM Tris
(pH 7.5), 150 mM NaCl, 1 mM EDTA, 1% NP40, 1 mM PMSF, 1 mM NaF,
1 mM NaVO,, and protease inhibitor cocktail (Roche Diagnostics,
Mannheim, Germany)]. Protein concentration was measured using BCA pro-
tein assay reagents (Pierce, Rockford, IL, USA). Equal amounts of cell
lysates were separated by sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis, and transferred to PVDF membrane (Millipore, Natick, MA,
USA). The membrane was blocked with blocking buffer [5% skim milk in 1%
Tween 20 in Tris-based saline (TBS-T)] at room temperature, incubated with
primary antibody in blocking buffer overnight at 4°C, washed twice with
blocking buffer, and then incubated with HRP-conjugated secondary antibody
for 2 h. After washing twice with blocking buffer and twice with TBS-T,
immunoreactive bands were visualized using SuperSignal West Dura
Extended Duration Substrate kit (Pierce) under CCD camera (ATTO, Tokyo,
Japan).

Reverse transcription-polymerase chain reaction (RT-PCR). Real-time RT-
PCR for FLIP mRNA expression was performed to quantify levels of FLIP
mRNA. Total RNA was isolated using an RNeasy kit (Qiagen, Valencia, CA,
USA), and 1 pg of RNA was reverse transcribed into cDNA using a
Quantitekt reverse transcription kit (Qiagen). Primer pairs for FLIP and
G3PD were purchased from Qiagen. Real-time RT-PCR was performed on an
ABI Prism 7700 using a QuantiTect SYBR Green RT-PCR Kit (Qiagen)
according to the manufacturer’s instructions. The levels of FLIP mRNA
expression were expressed as a ratio to those of G3PD.

RESULTS

TSA treatment reduced cell proliferation of RA-SF in a dose-
dependent manner. TSA has been shown to have properties to
induce growth arrest of various tumor lines in vitro®. To
determine whether TSA also had the same effects on RA-SF,
we counted viable cell numbers under microscopy (Figure
1a). In both experiments, RA-SF proliferated well in vitro, and
the addition of TSA suppressed their growth and/or inhibited
their survival in a dose-dependent manner. A quantity of 1 to
5 uM TSA completely inhibited cell proliferation and
decreased cell numbers. We then examined the growth
inhibitory effects of TSA on RA-SF from 4 different patients
on Day 3, using WST-8 assay (Figure 1b). TSA treatment
reduced cell viability of RA-SF in a dose-dependent manner,
compatible with the results above. TSA was effective in all
cases, although one case needed a higher concentration.

TSA treatment induced p21WAFI/CIPlin RA-SF. Tt has been
shown that TSA regulates cell cycles by regulating cell cycle-
related molecules. Among them, p21WAFI/CIP1 appears to be a
key molecule to cause cell cycle arrest?”28, Therefore we test-
ed the effects of TSA on p21WAFI/CIPT Jevels in RA-SF by
Western blotting (Figure 1c). TSA treatment upregulated
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Figure 1. Effects of trichostatin A (TSA) on cell viability and p21 levels in RA-SF. a. RA-SF (3 x 10* cells/500 pl/well) were cultured in 24-well plates in the
presence of indicated concentrations of TSA. On Day 0, 1, 2, 3, and 4, adherent cells were harvested, and viable cell numbers were counted under microscopy.
Data were expressed as the mean of triplicate cultures. SD bars were less than 10% and were omitted. Results of 2 experiments are shown. b. RA-SF from 4 dif-
ferent donors were incubated in the presence of indicated concentrations of TSA, and the cell viability was determined by WST-8 assay on Day 3. Results are
shown as mean of 4 wells. *p < 0.05. *¥p < 0.01. ***p < 0.001. c. RA-SF (2 x 10 cell/10 ml) were incubated in the presence of TSA for 40 h. Cell lysates were
prepared, and Western blotting was carried out as described in Materials and Methods. Representative results from 3 similar experiments are shown.

expression of p21WAFI/CIPT protein at 1 M. The other p21
family member, p27XP!, was not upregulated by TSA, in
agreement with previous reports?82%, It has been shown that
P53, one of the most potent pro-apoptotic molecules, upregu-
lates p21WAFI/CIPL expression230, Also, p53 can be acetylat-
ed and deacetylated by p300 and HDAC, respectively, result-
ing in altered gene regulation®!. Thus we examined the effects

of TSA on p53 expression and acetylation in RA-SF, and
found that TSA neither upregulated p53 expression nor
induced acetylation of this molecule (Figure 1c). The results
suggested that p21 WAFICIPL "byt not p27KIP1 or p53, may be
involved in TSA’s effects on growth inhibition of RA-SE.

Other HDACI also reduced cell growth of RA-SF. We next
examined whether other HDACi could inhibit cell prolifera-
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tion of RA-SE. We also tested whether these drugs would
exert their effects in the presence of PDGF, a potent growth
factor for RA-SF (Figure 2). All the HDAC: tested, SAHA,
sodium butylate, and valproic acid suppressed cell growth of
RA-SF in a dose-dependent manner. The effects of the
HDACI were also observed in the presence of PDGF. These
results indicate that TSA reduced cell growth through its
HDAC inhibitory effects.

TSA synergizes with anti-Fas antibody to induce RA-SF into
apoptosis. Next we tried to determine whether TSA has syn-
ergistic effects with Fas-mediated cell death. In our experi-
ment, RA-SF were cultured in the presence of TSA (1 M) for

a

24 h, and then pulsed with anti-Fas antibody (500 ng/ml) for
18 h. WST-assay showed that preincubation with TSA potent-
ly augmented Fas-induced apoptosis, demonstrating synergis-
tic effects of TSA and anti-Fas stimulation (Figure 3a). We
then asked whether caspase inhibitors suppress Fas-induced
apoptosis to determine whether the synergistic effects were
dependent on the caspase pathway. We carried out the cell via-
bility assay in the presence of caspase inhibitors VAD-FMK
and IETD-FMK, which inhibit global caspase and caspase-8
activity, respectively (Figure 3b). After TSA treatment for 24
h, RA-SF were incubated with anti-Fas antibody as described.
Caspase inhibitors were added just prior to the addition of

3 TSA
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Figure 2. Effects of various HDACi on cell proliferation of RA-SF. RA-SF (5 x 103 cells/100 ul/well) were incu-
bated in the absence or presence of PDGF (10 ng/ml), and indicated doses of TSA (a), SAHA (b), NaB (c), and VPA
(d) were added for 3 days. Cell viability was determined by WST-8 assay. Results are shown as mean + SD of 4

wells. *p < 0.05. **p < 0.01. ***p < 0.001.
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Figure 3. Synergistic effects of TSA and anti-Fas stimulation on cell viability of RA-SF. a. RA-
SF (5 x 103 cells/100 pl/well) were incubated in a 96-well plate in the presence of TSA for 24
h. Anti-Fas antibodies (500 ng/ml) were added to the wells for additional 18 h incubation. Cell
viability was determined using WST-8 assay. Data were expressed as mean + SD of 4 wells.
Representative results of 3 experiments are shown. b. RA-SF were incubated with TSA (1 uM)
and anti-Fas as above. VAD-FMK (4 M) or IETD-FMK (4 yM) was added just prior to addi-
tion of anti-Fas antibody. Data were expressed as mean + SD of 4 wells. *p < 0.05. **p < 0.01.

#55p < 0,001,

anti-Fas antibody. Both VAD-FMK and IETD-FMK reversed
the viability of TSA + Fas-treated cells to the level of TSA-
treated cells, demonstrating that all the synergistic effects
were mediated through the caspase pathway.

Finally, we used annexin V and PI staining to confirm that
the synergistic effects were mediated through apoptosis
(Figure 4). RA-SF were incubated with medium, TSA, anti-
Fas antibody, or TSA + anti-Fas antibody, in the presence or
absence of VAD-FMK. Anti-Fas antibody (panel e) induced
dead (PI-positive) cells and dying (Annexin V-positive, PI-
negative) cells. TSA and anti-Fas stimulation (panel g) potent-
ly induced dead and dying cells, consistent with the data
obtained by WST-8 assay. VAD-FMK reversed the synergistic
effects of TSA and Fas stimulation, confirming the data from
the WST-8 assay. These results indicated that TSA treatment
sensitized RA-SF to Fas-mediated apoptosis.

TSA did not affect surface Fas expression and Bcl-2 and Bcl-
X, expression. We investigated the mechanism behind the
synergistic effects of TSA and anti-Fas stimulation. First, we
examined the effect of TSA on surface expression of Fas on
FACScan, but did not find any change after 44 h (Figure 5a).
Next we examined the effects of TSA on expression of Bcl-2

and Bcl-X| , which are known as general anti-apoptotic mole-
cules. However, TSA at a concentration even as high as 5 uM
did not suppress protein levels of these 2 molecules (Figure
5b). Thus it seemed that neither Fas nor Bcl-2 family proteins
were involved in TSA sensitization of Fas-induced cell death.

TSA reduced FLIP expression in RA-SF. Finally, we examined
the effect of TSA on FLIP expression because the effect is
dependent on the caspase pathway. FLIP is a naturally occur-
ring caspase-8 homolog, which inhibits Fas-induced death
signal by preventing procaspase-8 from binding with FADD
and thereby inhibiting its activation’2, FLIP is expressed in
RA synovium and appears to be involved in altered apoptosis
of synovial cells33-3*. Two forms of FLIP proteins, FLIPS and
FLIPL, are generated through splice variants. TSA treatment
for 24 h and 44 h reduced FLIPL protein expression, while
FLIPS protein was not detected in RA-SF (Figure 5c). We also
found that TSA reduced FLIP mRNA expression. Time-course
analysis using real-time RT-PCR showed that FLIP mRNA
expression was downregulated as early as 3 h after 1 M TSA
treatment. These results were consistent with a report that
showed HDACi suppression of FLIP expression in human
myeloma cell lines?”. Thus we speculate that TSA downregu-

—| Personal non-commercial use only. The Journal of Rheumatology Copyright © 2006. All rights reserved. |—

1056

The Journal of Rheumatology 2006; 33:6

Downloaded on April 9, 2024 from www.jrheum.org


http://www.jrheum.org/

' '
;28
10~ 10

4

o 14
"1!::':j 0
e
DI -
=31.10 | . .-401
1 2
Fas 1 % '
1
o _; T 414
= LLliel Wbkl | bbb | b
= 102 10% 10

100 10
g

Control

Annexin V

VAD-FMK

Figure 4. Synergistic effects of TSA and anti-Fas stimulation on apoptosis of RA-SF. RA-SF (3 x 10°
cell/2 ml) were incubated as described for Figure 3. Cells were treated with medium (a, b), TSA (1 uM; c,
d), anti-Fas antibody (500 ng/ml; e, f), and TSA + anti-Fas antibody (g, h). As well, cells were incubated
in the presence (b, d, f, h) or absence (a, c, e, g) of VAD-FMK (4 uM). Cells were harvested and stained

with PI and Annexin V for flow cytometer analysis.

lates FLIP expression, thus sensitizing RA-SF to Fas-induced
caspase activation.

DISCUSSION

HDAC: induce cell cycle arrest, differentiation, and apoptosis
in tumor lines. We found that TSA also reduces cell prolifera-
tion and induces apoptosis in RA-SF. It has been reported that
HDAC: cause G1 arrest and G2 checkpoint in transformed
and normal cells. While we observed TSA induction of

p2 1 WAFI/CIPI * ye failed to observe cell cycle arrest by PI

staining, probably because cell populations in S, M, and G2
phases were not large enough to reveal the differences®.
HDACi may mediate apoptosis through various pathways
depending on cell types. Upregulation of Fas or Fas-L and
Bax family proteins and production of reactive oxygen
species have been reported?’-33-37, Thus the molecular mech-
anism behind TSA’s induction of apoptosis in RA-SF should

be clarified. It would be interesting to ask how the selective
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Figure 5. Effects of TSA on the expression of Fas, Bcl-2, Bcl-X; , and FLIP.
RA-SF were incubated in the presence of TSA for 44 h, and harvested. Cell
surface Fas expression (a) and protein levels of Bel-2, Bel-X , and B-actin (b)
were determined by flow cytometry and Western blotting, respectively. c.
RA-SF were incubated in the presence of TSA for 24 h. FLIP expression was
determined by Western blotting. d. RA-SF were incubated in the presence of
1 uM TSA for indicated hours and FLIP mRNA expression was determined
by real-time RT-PCR. SD bars were less than 5% and omitted. **p < 0.01.
**kp <0.001

genes are regulated and which genes are affected by HDACi
in RA-SF. Understanding the molecular mechanisms of action
of HDACi will lead to more specific molecular target therapy
in the treatment of RA.

The most important result in our work is TSA sensitization
of RA-SF to Fas-induced apoptosis. RA-SF express Fas anti-
gen, but apoptosis of these cells has been infrequently detect-
ed in vivo despite the presence around them of Fas-L-express-
ing cells or TNF-o. The resistance of RA-SF to death recep-
tor-mediated cell death has been ascribed to increased expres-
sion of Bcl-2, FLIP, or SUMO-1121633.34.38 Thys downregu-
lation of these molecules seems to be a rational strategy to
induce apoptosis of RA-SF. HDACi have been reported to
sensitize tumor cells to Fas-mediated cell death, although the
mechanisms are unknown?’, We first showed that TSA down-
regulates FLIP expression in RA-SF, suggesting one of the
molecular mechanisms of the sensitization to Fas signaling.
Similar effects have recently been reported in other cell
lines®”. Administration of anti-Fas antibody or Fas-L is effec-
tive in abrogating arthritis in animal models, but therapeutic
use in humans is limited because of liver toxicity*>*!. Our
results imply that HDACi may be therapeutically of use to
induce apoptosis by sensitizing cells to Fas stimulation.

Immunosuppressive effects of HDACi have recently been
reported. HDACi can alter T cell function, such as CD154
expression and cytokine production profile, and osteoclast dif-
ferentiation from bone marrow cells*?46, T cells and osteo-
clasts are involved in the adaptive immune and destruction
phases, respectively, in the pathogenesis of RA. Moreover, in
vivo effects of HDAC:! in the treatment of autoimmune disease
models have been reported. HDACi downregulated cytokine
expression, reduced mesangial cell proliferation, and amelio-
rated renal disease in MRL-Ipr/lpr mice*’*%. Phenylbutylate
and TSA upregulated p21WAFI/CIP1 "and p16INK4 downregu-
lated TNF-o0 and reduced cell infiltration and hyperplasia,
resulting in no destruction to cartilage or bone in a rat model
of adjuvant arthritis>>>*. We speculate that HDACi are effec-
tive in the animal models of RA or systemic lupus erythe-
matosus because RA-SF, lymphocytes, and mesangial cells
from MRL-Ipr/lpr mice are sensitive to HDACi due to the
altered growth and cell death of these cells. These in vivo
results support the application of HDACi for autoimmune
conditions.

Some HDACI are in clinical trial for the treatment of
leukemia/lymphoma'®20. The drugs are well tolerated
because they are relatively nontoxic to normal cells. Although
it remains unclear how HDAC: affect neoplastic cells, prolif-
erating cells seem to be susceptible to HDACi because they
are not cytotoxic to cells that are arrested in the GI phase. To
date, various kinds of HDACI, such as short-chain fatty acid,
hydroxamic acid, and tetrapeptide, have been described?’. We
found that various HDACi suppress RA-SF growth in vitro. It
is important from the clinical point of view to determine
which drugs would have potent effects on RA-SF in vivo.

We demonstrated that trichostatin A induces apoptosis and
sensitizes to Fas-mediated apoptosis in RA synovial fibroblasts.
Our work provides a new strategy to induce apoptosis in RA-
SF, and thus may lead to a new option for the treatment of RA.
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