Editorial

The Possible Clinical Application of
Pharmacogenetics in Rheumatology

Pharmacogenetics is an area of research that has gained
much popularity in various fields but most of all in
oncology', neurology?, and more recently, in cardiology?.
Pharmacogenetics has been defined as the study of vari-
ability of drug responses due to hereditary factors*, but more
often it has been considered a tool to translate functional
genomics into rational therapeutics’, that is, assessing the
role of genetic determinants in the variable response to the
same molecule at the same dose. However, pharmacoge-
netics focused on the variants (or mutants) of single genes
was, until recently, considered of little value, even though
there was some evidence that drug-metabolizing enzymes
played an important role under strict genetic control®.
There are 3 areas that deserve particular attention: the
relationships between (1) genotypes or immunogenotypes
and drug metabolism; (2) genotypes or immunogenotypes
and adverse drug reactions; and (3) genotypes or
immunogenotypes and clinically relevant effects of drugs.

Pharmacogenetics, drug metabolism, and disease suscepti-
bility. Remarkable evidence was obtained when studying
CYP2D6 gene function, responsible for the metabolism of
nortriptyline. Homozygous carriers of the loss-of-function
alleles of CYP2D6 cannot degrade many drugs. It has been
clearly shown that 5-10% of Caucasians are poor metabo-
lizers through CYP2D6 and are homozygous for 2 recessive
loss-of-function alleles of the gene controlling cytochrome
p450 monooxygenase CYP2D678, In these subjects, opioid
analgesics are activated, thus explaining the variability of
response to codeine between individuals. Furthermore, in
these subjects the use of tricyclic antidepressants (nortripty-
line), amiodarone, and clarithromycin has been associated
with toxicity occurrence. On the other hand, carriers of two
B1 alleles of cholesterol ester transfer protein were shown to
be the best responders to pravastatin used in coronary artery
diseases’. These were clear indications that a genetic setting
could not only influence the pharmacokinetic but also the
clinical response to a particular drug. A poor drug metabo-
lism might have some effects also on disease susceptibility.
Indeed, examining 383 patients with ankylosing spondylitis
(AS) and 269 healthy controls, a significant association was
found between homozygous CYP2D6%4 and AS [RR = 2.1,
95% confidence interval (CI): 1.3-3.4, p = 0.002]'°. Since it
is well known that xenobiotics produce proinflammatory

effects on T cells!!, an impaired xenobiotic metabolism
might be involved in the induction of inflammatory
diseases, such as AS, in which major histocompatibility
complex (MHC) genes contribute only 20-50% of the
genetic risk. At this time, no data are available on any
possible relationship existing between cytochrome gene
polymorphisms, drug metabolism, and drug response in AS.

Pharmacogenetics and drug transporters. Several trans-
porters of drugs have been detected in the intestine, liver,
kidney, and also in the central nervous system and
blood-brain barrier. It has been shown that there are 15
allelic variants of the MDR-1 P glycoprotein (P-gp) gene
even though their functional basis is at present unknown'. It
is probable that studies on polymorphic drug transporter
genes will be undertaken in the near future.

Pharmacogenetics, immunopharmacogenetics, pharma-
cometabolism, and adverse drug reactions (ADR). Serious
ADR are the sixth leading cause of death in the United
States and result in $75 billion in health care costs!'?. In addi-
tion, 60% of the drugs listed among those inducing ADR
undergo metabolism through one of the type I enzymes,
with a variant allele (mutation) possibly impairing their
metabolism!3. Type I enzymes are predominantly oxidative
enzymes. Typical phase I enzymes are cytochrome P-450
(CYP) enzymes. Pharmacogenetics might truly improve the
personalized approach using molecules that follow such
metabolic pathways.

Pharmacogenetics and phase Il enzymes. Very few drugs
are metabolized by phase II enzymes, which couple the by-
products of phase I enzymes. Typical phase II enzymes
include methyl-transferases, n-acetyl-transferases, and
glutathione-s-transferases. One of the most relevant poly-
morphisms was found in people carrying a defect in thiop-
urine-methyl-transferases (TPMT), which metabolize
6-mercaptopurine and azathioprine very slowly. There is
one genetic polymorphism of TPMT activity with 90% of
the population manifesting a high level of activity, 10% a
medium level, and 0.03% a full deficiency. As a conse-
quence, patients homozygous for the wild-type allele need a
dose of 100 mg/m?, while the dose for patients with the
homozygous defective allele!* should be no more than 10
mg/m?. Of course a poor personalized dosing regimen with
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azathioprine could cause an increased toxicity, agranulocy-
tosis, or severe thrombocytopenia due to the accumulation
of high concentrations of thioguanine nucleosides. This was
clearly shown to be the case by Stolk, e al'>. Of 33 patients
with rheumatoid arthritis (RA) treated with azathioprine, 14
developed ADR. In these patients, TPMT activity was
significantly lower than in those without toxicity. In partic-
ular, 7 of the 8 patients with intermediate activity developed
toxicity, resulting in a significant relationship (p = 0.005)
with toxicity and a relative risk of 3.1 (95% CI 1.6-6.2),
suggesting that TPMT activity, as determined by the variant
alleles, is a strong determinant of azathioprine toxicity.
Marra, et al'® have recently calculated the cost-effectiveness
of TPMT polymorphism screening in patients with
rheumatic diseases before giving the drug, and were able to
conclude that the introduction of polymerase chain reaction
(PCR) testing of such functionally relevant polymorphisms
may represent good value in certain health care settings.
Indeed, the usual dosing strategies were estimated to cost
CANS$677, whereas a previously defined genotype with a
lower dose cost CAN$665. Therefore, at least concerning
azathioprine, pharmacogenetic analysis seems ready to enter
the clinical practice.

Pharmacogenetics and drug targets. A possible association
of methylene-tetrahydrofolate reductase (MTHFR) gene
polymorphisms and drug efficacy or toxicity was recently
examined in 106 patients with RA treated with methotrexate
(MTX) in Japan. A higher rate of overall toxicity was seen
in patients with the 677T allele of MTHFR compared to
patients without the allele (RR = 1.25, 95% CI 1.05-1.49, p
< 0.05). Patients with the 1298C allele were receiving
significantly lower doses compared to patients without the
allele (RR = 2.18, 95% CI 1.17-4.06, p < 0.05).
Confirmatory data are clearly needed, but this study
suggests possible relationships between MTHFR gene poly-
morphisms and favorable response or toxicity!”. This is
reminiscent of the identification of 3 major variant genes of
lipoxygenase A (ALOX 5), inducing the presence of
different numbers of binding sites for SP1, a transcriptional
factor crucial for the nuclear message. ALOX 5 is the
enzyme required for the production of both cysteinyl-
leukotrienes (LTC4, LTD4, LTE4) and LTB4. ALOX 5
activity partially determines the level of leukotrienes in the
airways. Since pharmacological inhibition of ALOX 5 or
antagonism of leukotrienes at their receptor level are associ-
ated with improvement of asthma symptoms, it is likely that
polymorphic variants of ALOX 5 might determine the
response to treatment. More particularly, the mutant geno-
type (less function leads to lower leukotriene levels) does
not respond to antileukotriene treatment because the disease
is not mediated by leukotrienes, but by other factors. Indeed,
when patients carrying the mutant variant were treated with
an ALOX 5 inhibitor (ABT-761), they experienced a
decrease of forced expiratory volume (FEV1), while carriers

of the wild-type had an improvement of FEV1'8, The same
results were later confirmed with a leukotriene inhibitor,
zafirlukast, thus suggesting that genotyping might help
define responders and nonresponders. Although less
evident, similar results were seen in studies analyzing the
differences in the response to B agonists in asthmatic
patients in the presence of variants of 31 and B2 adrenergic
receptors!®. In addition, a metaanalysis of 5 studies of
patient responders and nonresponders among 5-HT2A
receptor variants (T102C and His452Tyr polymorphism)
of schizophrenic patients treated with clozapine reported a
clear association of the 102-T/C with clozapine
response?’. Immunopharmacogenetics might also help to
define the immunogenetic setting driving either the
response to drugs or the occurrence of toxicity. Along this
line, several attempts have been made to analyze the ADR
developing during disease modifying antirheumatic drug
therapy in RA and their relationship with the MHC-HLA
genotype. An association was seen by several groups
between D-penicillamine or aurothioglucose-related ADR
and DR32!"2| or between thiopronine (another drug effi-
cacious in RA) and B35-Cw4 alleles®*. More recently, a
relationship between lack of gingival overgrowth on
cyclosporine A (CsA) and the presence of HLA-DR1 has
been described?.

Immunopharmacogenetics and drug efficacy. O’Dell, et al*®
observed that the majority of their patients responding to the
triple therapy (MTX, sulfasalazine, and hydroxychloro-
quine) carried the MHC-HLA shared epitope (DR0401-
0404, 0405, 0101, 1001, 1402), while only a minority of
responders to MTX alone did so (94 vs 32%). Over the past
year our group reported 52% of responders to CsA (vs 6%
of nonresponders) carried DR4-DR1, while MTX respon-
ders behaved differently, with 80% of responders carrying
non DR4-DR1 alleles (vs 28% of nonresponders)”’. A
possible synthesis of these data has been provided by
Gonzales-Gay, et al’®, who showed that patients with
aggressive RA needing a combination of MTX and CsA
were carrying the HLA-DRBI1 shared epitope alleles, such
as DR4 or DRI, more frequently than those continuing
monotherapy with MTX. According to these data, carriers of
DR4-DR1 would be expected to require combination
therapy.

Immunopharmacogenetics and anti-tumor necrosis factor
(TNF)-a therapy. The advent of biological response modi-
fiers (BRM), like TNF-a blockers, offers a unique opportu-
nity to test a genetic setting predisposing either to a
favorable response or to ADR. The early identification of
patients who will respond positively to these drugs will be
of great help in establishing a cost-effectiveness profile of
these molecules. So far there are no data in this regard. The
few preliminary observations suggest that more studies
should prospectively address the issue. Our group has
recently provided data showing that genotyping patients for
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the TNF receptor type II (RII) gene might be of help in iden-
tifying patients who are responsive to anti-TNF. The
TNFRII gene shows a polymorphism in exon 6 with 2
alleles, T and G. When the T allele, but not the G allele, is
present, the Nla restriction enzyme cleaves the 242 base-
pair PCR product, generating 2 smaller fragments of 133
and 109 base pairs. In our study we observed that in RA
patients (66 patients all resistant to a combination therapy,
therefore receiving TNF-o blockers in addition to MTX),
the TG/GG genotype carriers (28 patients), all with disease
activity scores > 3.7, had a very low chance of achieving
moderate or low disease activity (< 3.7 or < 2.4) after
therapy, while the patients with the TT genotype (38
patients) had a 3-fold higher chance of responding (37.8 vs
10.7%; OR 5.1, 95% CI 1.3-19.96, p = 0.03). We believe
that patients carrying the G allele are unlikely to benefit
from TNF blockers?.

Recently, Mugier et al*® observed that carriers of the
—308 TNF-a G/G genotype responded better to infliximab.
This was also confirmed for etanercept by Padyukov, et al’!,
who observed that carriers of the TNF —308 G/G and simul-
taneously of the IL-10-1097 G/G genotypes had better
results with the drug.

This is reminiscent of the clinical pharmacogenetic link
observed in breast cancer patients expressing (or not) high
levels of HER-2/neu protein (HER-2: surface growth factor
overexpressed in 25-30% of metastatic breast tumors).
Women overexpressing HER-2 present a particularly
aggressive form of the disease with a poor prognosis.
Through the Hercep test, a semiquantitative measurement of
HER-2 expression, patients with high expression can be
given herceptin (a monoclonal antibody against HER-2)

with a higher chance of obtaining positive results. Clinical
benefits were seen only in patients who were strikingly posi-
tive®?, It is interesting that FDA-approved pharmacogenetic
tests detecting HER-2 gene amplification, either directly or
indirectly, are already available [www.fda.gov/cdrh/pma
/pmasep98.html].

The use of new therapeutics, like BRM, that result in
serious ADR in only a minority of patients creates unique
opportunities for addressing the crucial question of
whether we should treat all patients with RA possessing
poor prognostic factors, or only some patients identified
with a favorable pharmacogenetic profile in terms of safety
and clinical efficacy. Several gene polymorphisms could
be prospectively tested for receptors or molecules involved
with BRM now used in clinical practice (Table 1). The
identification of any possible relationship with ADR or
clinical efficacy would be a tremendous step forward. To
make this type of testing a reality, we need the support of
institutions and companies to perform international studies
that will allow us to define the real chance of using this
tool at the bedside.
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Table 1. Pharmacogenetics and immunopharmacogenetics at the bedside: examples of genetically determined variations possibly influencing therapeutic

responses.

Polymorphic Gene Target Disease

Effects

CYP2D6 Depression, arrythmia, infections Nortriptyline, amiodarone, clarithromycin Slow metabolizers: increased toxicity
Rapid metabolizers: decreased efficacy
CETP (cholesteryl CAD Pravastatin Carriers of 2 B1 alleles more benefit
ester transfer protein)
B, adrenergic receptor Asthma Albuterol Homozygous Gly16/Gly16 more sensitive than
Argl6/Argl6
ALOXS Asthma Zileuton Wild: type (WT): efficacy; mutated-type (MT) worse
TPMT RA, Crohn’s, SLE Azathioprine TPMT 1(wild): normal doses; TPMT 3A, B, C:
myelotoxicity
TNFRII T/T RA Infliximab Best responders
TNF-a -308 G/G RA Infliximab Best responders
TNF-a -308 G/G + RA Etanercept Best responders
-1087 G/G

CYP2D6: cytochrome P 450 enzyme 2D6 isoform (the isoform 2D6 along with the 3A4 and 2C9 are the most important forms and account for 60-70% of
all phase I dependent metabolisms); CETP: cholesteryl ester transfer protein (the homozygous B1 genotype associates with a clinically relevant response to
the HMG-CoA reductase inhibitor pravastatin); ALOXS: 5 lipoxygenase gene (located on chromosome 10q11.12) with 2 promoter genotypes, the wild and
the mutant; TPMT: thiopurine methyltransferase (the most important variants that account for 90% of the defective alleles in Europeans are TPMT 3A, 3B
and 3C); DR 1-4 (DRB1): DRB1 rheumatoid epitope; TNFRII-G: allele G of the p75 TNF-a receptor, TNF-a. =308 G/G. CAD: coronary artery disease.
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