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Systemic sclerosis (SSc) is a connective tissue disease char-
acterized by cutaneous and visceral progressive fibrosis,
microvascular changes with endothelial cell damage, and
perivascular inflammatory infiltration1. SSc has a strong
predilection for women (sex ratio as high as 14:1) after child
bearing years (age-specific incidence between 45 and 55
yrs)2. 

During pregnancy, bidirectional traffic of cells at the
fetal-maternal interface is well known3. Fetal cells of
various types are found in the peripheral blood of most preg-
nant women4-9. Fetal progenitor cells (CD34+CD38+ cells)
can persist for decades after childbirth in some women10.
Nelson, et al showed that this microchimerism of fetal
origin was found more frequently and was markedly quanti-
tatively greater in patients with SSc than in healthy
patients11. Artlett, et al reported fetal cells in skin biopsies of
SSc but not in controls12. Moreover, SSc shares clinical
features with chronic graft-versus-host disease, a chimeric
disorder that occurs in recipients of allogenic stem cell

transplantation13,14. These findings led Nelson, et al to
suggest that persisting microchimerism of fetal origin could
be involved in the pathogenesis of SSc11,15,16. However, SSc
can occur in nulligravid women or in men too, suggesting
either other causes of microchimerism or the participation of
other pathogenic mechanisms. Moreover, there are several
clinical subsets of SSc and it is possible that pregnancy
related microchimerism leads preferentially to the occur-
rence of a specific SSc subset.

We assessed the relationship between the characteristics
of pregnancies and the clinical and biological features of
SSc. 

MATERIALS AND METHODS
Study population. We studied 100 consecutive women with SSc fulfilling
the American College of Rheumatology criteria17 and followed in the
Department of Internal Medicine of the Claude Huriez Hospital (Lille,
France) between 1990 and 1999. Date of disease onset was defined as the
date of the occurrence of the first symptom of SSc [Raynaud’s phenomenon
(RP) in all cases], and age at diagnosis was defined as the age when the
patient was first told by a physician that the diagnosis was SSc. Cutaneous
extension was graded according to LeRoy’s classification system18: limited
(hands, forearms, face, or feet) or diffuse (truncal and acral). CREST
syndrome (diagnosed if 3 of the 5 following items were present: calcinosis,
RP, esophageal involvement, sclerodactyly, telangiectasia) was included in
the limited SSc group. Pulmonary fibrosis was assessed by chest computed
tomodensitometry and pulmonary function tests. Pulmonary fibrosis was
defined by the presence of parenchymal micronodules, honeycombing, or
linear opacities on chest computed tomodensitometry and abnormal lung
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function (lung volumes < 80% of predicted values and/or diffusing capacity
< 75% of that predicted)19-20. Antinuclear antibodies (indirect immunofluo-
rescence on rat liver) were either anticentromere (on HEp-2 cells), anti-
Scl70 (by immunoblot analysis), or antinucleolar antibodies (on HEp-2
cells). We recorded the number, sex, and date of birth of the children in all
patients.

Statistical analysis. Number of children according to the subtypes (limited
vs diffuse SSc) were compared using Student’s T test and chi-square test
with Yates’ correction when necessary. Pulmonary fibrosis was signifi-
cantly more frequent in patients with diffuse SSc and anticentromere anti-
bodies (ACA) were more frequent in limited SSc. Therefore, we compared
the number of children between patients with and without pulmonary
fibrosis as well as between patients with and without ACA using a 2 way
analysis of variance (ANOVA) including the subtype of SSc. Concerning
the interval between first pregnancy and SSc onset according to the subtype
of SSc and to the presence of ACA, we performed an analysis of covariance
(ANCOVA, with age at disease onset as covariate) and a 2 way ANCOVA
(including subtype of SSc), respectively. To compare the number of girls,
we performed a 2 way ANOVA including the subtype of SSc and the
number of children. To compare age at first birth according to the sex of the
child, we performed a 2 way ANOVA including the subtype of SSc. To
compare the interval between the first birth and the SSc onset according to
child’s sex, we performed a 2 way ANCOVA including child’s sex and
subtype of SSc as well as age at disease onset as covariate.

RESULTS
Characteristics of the SSc (Table 1). SSc was limited in 72
patients (72%) including 47 CREST (47%); and SSc was
diffuse in 28 patients (28%). Age at diagnosis did not differ
significantly between patients with limited SSc and patients
with diffuse SSc (51.8 ± 13.9 vs 52.8 ± 15.9; NS). Patients
with limited SSc had a longer disease duration before diag-
nosis than patients with diffuse SSc (15.6 ± 12.9 vs 11.6 ±
9.2 yrs; p < 0.05). Pulmonary involvement was more
frequent in patients with diffuse SSc than in patients with
limited SSc (22/28 vs 17/72; p < 0.05). ACA were more
frequent in patients with limited SSc than in patients with
diffuse SSc (47/72 vs 0/28; p < 0.05). Conversely, anti-
Scl70 antibodies were more frequent in patients with diffuse
SSc than in patients with limited SSc (15/28 vs 7/72; p <
0.05).

Number of children and SSc features. Eighty-three patients
had had children, with a mean number of children of 2.2 ±
1.8. Median age at the first birth was 24 years. Patients with
limited SSc had significantly more children before SSc
onset than patients with diffuse SSc (2.4 ± 1.8 vs 1.7 ± 1.5;

p < 0.05). We compared frequency of limited SSc between
nulliparous patients and patients with more than 1 child
[10/17 (58.8%) vs 62/83 (74.7%); p = 0.18], between
patients with 0 or 1 child and patients with 2 or more chil-
dren [23/37 (62.1%) vs 49/63 (77.7%); p = 0.09], and finally
patients with 0, 1, or 2 children and patients with 3 or more
children [44/68 (64.7%) vs 28/32 (87.5%); p < 0.05] (Figure
1). Patients with ACA had the same number of children as
patients without ACA (2.3 1.6 vs 2.2 1.9; p = 0.48). Patients
with pulmonary fibrosis had significantly more children
before SSc onset than patients without pulmonary fibrosis
(2.5 ± 1.9 vs 2.0 ± 1.6; p < 0.05). Among patients with
limited SSc, patients with pulmonary fibrosis had more chil-
dren than patients without pulmonary fibrosis (3.5 ± 2.3 vs
2.1 ± 1.6; p < 0.05). The difference was not statistically
significant for patients with diffuse SSc (1.9 ± 1.5 and 1.3 ±
1.2; NS) (Figure 2).

Interval between first pregnancy and SSc onset. The mean
age at first birth was 25.2 ± 6.2 years for patients with
limited SSc and 26.2 ± 7.6 years for patients with diffuse
SSc (NS). Seventeen patients were nulliparous (11 limited
SSc and 6 diffuse SSc). The age of onset of diffuse versus
limited SSc in nulliparous women was 35.1 ± 17.4 years
versus 38.0 ± 19.3 years; p = 0.48. Eighty-three patients
were multiparous (62 limited SSc and 24 diffuse SSc). The
age of onset of diffuse versus limited SSc in multiparous
women was 49.4 ± 17.1 versus 35.8 ± 14.4 years; p < 0.01.
The interval between the first birth and SSc onset was
significantly shorter for patients with limited SSc than for
patients with diffuse SSc (11.0 ± 9.9 vs 23.5 ± 14.5 yrs; p <
0.01). This interval was also shorter for patients with ACA
than for patients without ACA but it did not reach statistical
significance in multiple ANCOVA analysis (18.0 ± 10.5 vs
23.8 ± 13.8 yrs; p = 0.1).

Sex of the children and SSc features. Patients with limited
SSc had the same number of girls as patients with diffuse
SSc (1.3 ± 1.1 vs 1 ± 0.8; p = 0.98). Age at first birth was
significantly higher when the child was a girl than when he
was a boy (26.8 ± 7.5 vs 22.9 ± 5.3 yrs; p < 0.05). Interval
between the first birth and SSc onset was shorter when the
first child was a girl than when he was a boy (16.2 ± 9.6 vs
25.4 ± 13.4 yrs; p < 0.05).
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Table 1. Comparison of patients with limited SSc and patients with diffuse SSc. Frequencies were compared
using the chi-square test with Yates’ correction. Means were compared using Student’s t test.

Limited SSc Diffuse SSc p
(n = 72) (n = 28)

Mean age at diagnosis 51.8 ± 13.9 52.8 ± 15.9 NS
Mean age at SSc onset 36.2 ± 15.4 42.8 ± 19 < 0.01
Pulmonary involvement (%) 17 (23.6) 22 (78.57) < 0.05
Presence of anticentromere antibodies (%) 47 (65.3) 0 < 0.001
Presence of anti-Scl70 antibodies (%) 7 (9.7) 15 (53.5) < 0.05
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DISCUSSION
Several studies have recently suggested the role of preg-
nancy related microchimerism in the pathogenesis of

SSc11,15,16,21. However, the role of microchimerism in SSc
pathogenesis remains controversial22: it does not address the
occurrence of SSc in nulliparous women or in men, even if
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Figure 1. Parity and systemic sclerosis type. Patients who had > 2 pregnancies had significantly more frequently
a limited SSc than patients who had 2 pregnancies (chi-square test with Yates’ correction).

Figure 2. Parity and pulmonary involvement. Patients with pulmonary involvement had significantly more chil-
dren before SSc onset than patients without pulmonary involvement.
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an alternative source of microchimerism is proposed such as
microchimerism of maternal origin3,23, unrecognized fetal
loss, engraftment of cells from an unrecognized twin, or
blood transfusion11,12,21,24. Further, the pathogenesis of SSc
probably involves other mechanisms such as exposure to
toxic substances25,26 or to other cells such as mast cells27,28.
Therefore, several subsets of SSc may exist with distinct
pathophysiological mechanisms; one of them could be
microchimerism of fetal origin.

We assessed the possible influence of parity on the
features of SSc. First, we found that most of the patients
with SSc (83%) had children before SSc onset, with a mean
number of 2.2 ± 1.8. We then found that multiparity was
mainly associated with limited SSc and pulmonary fibrosis.
Moreover, limited SSc occurred more quickly after the first
birth than diffuse SSc. Conversely, nulliparous women with
limited SSc did not have an earlier onset of disease than in
nulliparous women with diffuse SSc. This could be an addi-
tional reason to think that the shorter interval between the
first birth and disease onset in limited SSc versus diffuse
SSc has a biological significance. Taken together, these
results may suggest that multiparity may be involved.
However, an alternative explanation to the observed differ-
ence of parity between limited and diffuse SSc could be that
fertility and/or pregnancy outcome may be different
between these 2 subsets of SSc. Discrepancies are found in
the literature concerning fertility and pregnancy outcome in
patients with SSc. Silman, et al and Englert, et al reported
an increased incidence of spontaneous abortion and infer-
tility in women with SSc before disease onset29,30. However,
no information about the subtype of SSc (limited or diffuse
SSc) was available in these studies. Moreover, a recent
study reports that infertility and miscarriage were not more
frequent in patients with SSc than in controls31. This study
involved patients with diffuse SSc (45%). The only reported
difference between patients with diffuse versus limited SSc
is that patients who chose not to have children were more
likely to have diffuse disease than the normal control
women. This could explain why, in our study, patients with
diffuse SSc with an earlier onset of disease were nulli-
parous. However, although we cannot totally rule out that
infertility and/or miscarriages are more frequent in patients
with diffuse SSc than patients with limited SSc, the litera-
ture does not provide firm evidence for this hypothesis.
Therefore, we have also suggested that limited SSc and
pulmonary fibrosis may be a subtype of SSc in which preg-
nancy related microchimerism is involved. We think that
subtypes of SSc should be distinguished in future studies
about microchimerism.

The factors that facilitate microchimerism are poorly
understood. Tolerance of women to fetal cells is probably of
great importance to prevent the clearance of these cells by
the mother’s immune system32. Risk of chronic graft-versus-
host disease after stem cell transplantation or blood transfu-

sion is greater if donor and recipient have HLA compati-
bility33. We found that the interval between the first birth
and the SSc onset was shorter when the first child was a girl.
Bonney, et al showed that pregnancy can be associated with
priming for a cellular immune response against H-Y Ag,
which could facilitate clearing of the migrating male fetal
cells and account for greater microchimerism in pregnancies
with a female fetus34. However, this is difficult to prove,
because technical methods to detect microchimerism can
only detect microchimerism from a male fetus. This possible
greater microchimerism in the female fetus may account for
the shorter interval observed between the first birth and the
disease onset in this case.

We found no correlation between diffuse SSc, anti-Scl70
antibodies, and parity. Pathogenesis of diffuse SSc may
involve other mechanisms such as exposure to toxic
agents25,26. Nietert, et al reported that anti-Scl70 antibodies
were more frequent in patients exposed to solvents26. Non-
immune cells may also be involved in the pathogenesis of
SSc, especially diffuse SSc. In previous studies performed
on labial salivary glands of patients with SSc we suggested
a role for tissue mast cells in SSc pathogenesis27,28.

We also found that patients with pulmonary fibrosis had
significantly more children before disease onset, and this
was mainly observed in patients with limited SSc. The
significance of this correlation remains unclear, but it could
represent new evidence for the participation of T lympho-
cytes in the pathogenesis of pulmonary fibrosis in SSc. In a
recent study, Atamas, et al found a correlation between
cytokine production by CD8+ lung cells and decline in
pulmonary function in patients with SSc35. In another study,
Wells et al found an increase in memory T cells in lung
interstitium of patients with SSc36. One can suggest that
some of these CD8+ and memory T cells are of fetal origin.
However, we did not compare these results with a control
group of patients with non-SSc related pulmonary fibrosis,
which would have provided important information
regarding the disease specificity of this finding.

To conclude, our study suggests that multiparity could be
preferentially associated with limited SSc and pulmonary
fibrosis. Limited SSc may therefore be the subset of SSc in
which pregnancy related microchimerism is involved. Our
study suggests that limited and diffuse SSc may represent
distinct disorders, each with its own causes and pathogenic
mechanisms. Moreover, we think that subtypes of systemic
sclerosis should be investigated in future studies about
microchimerism.
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