D-Hormone and the Immune System

MARGHERITA T. CANTORNA and BRETT D. MAHON

ABSTRACT. D-hormone $[1,25(OH)_2 D_3]$ is an important immune system regulator that has been shown to inhibit development of autoimmune diseases including experimental inflammatory bowel disease (IBD), rheumatoid arthritis (RA), multiple sclerosis (MS), and type 1 diabetes. Paradoxically, other immune mediated diseases (experimental asthma) and immunity to infectious organisms were not found to be affected by D-hormone treatment. The effectiveness of D-hormone treatment of autoimmune diseases is due to inhibition of the development and function of Th1 cells and the induction of other Th cells including Th2 cells. We report results of microarray analysis of colons from D-hormone treated mice with experimental IBD. Two hundred thirty-nine genes were inhibited and 298 genes were upregulated in the colon by D-hormone treatment of mice with IBD. Of interest was the D-hormone mediated inhibition of 3 tumor necrosis factor- α (TNF- α , lipopolysaccharide-induced TNF- α factor, and TNF receptor) related genes in the colon. It is likely that the effectiveness of D-hormone treatment of experimental autoimmunity is due in part to the inhibition of the TNF family of genes. D-hormone is a selective regulator of the immune system, and the outcome of D-hormone treatment depends on the nature (infectious disease, asthma, autoimmune disease, etc.) of the immune response. (J Rheumatol 2005;32 Suppl 76:11-20)

Key Indexing Terms: VITAMIN D RECEPTORS CALCITRIOL

IMMUNE SYSTEM

TUMOR NECROSIS FACTOR ANIMAL DISEASE MODELS

The discovery of the vitamin D receptor (VDR) in the cells of the immune system and the fact that activated dendritic cells produce the vitamin D hormone¹ suggested that vitamin D could have immunoregulatory properties. VDR, a member of the nuclear hormone receptor superfamily, was identified in mononuclear cells, dendritic cells, antigen-presenting cells, and activated T lymphocytes.

A physiological role for vitamin D in the immune system is suggested by the presence of the VDR in primary lymphoid organs. The primary lymphoid organs (bone marrow and thymus) are the centers where the immune system develops and differentiates^{2,3}. However, VDR knockout (KO) mice have normal thymuses, normal myelopoiesis of the bone marrow, and no overt abnormalities in other immune system compartments⁴. Recently it has been shown that when activated, the VDR knockout mouse has overactive and inflammatory T cells; moreover, in animals susceptible to inflammatory bowel disease (IBD), this results in a fulminating form of IBD⁵. The function of VDR in the primary lymphoid tissues is not known, but arguably there is a role of the Dhormone in regulating the processes occurring there.

From the Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA.

Supported by Crohn's and Colitis Foundation of America, Senior Research Award, and NIH-NINDS 1R01 NS38888-01A4.

M.T. Cantorna, PhD, Assistant Professor of Nutrition Immunology; B.D. Mahon, PhD.

Address reprint requests to Dr. M.T. Cantorna, Department of Nutritional Sciences, 126 S. Henderson Bldg., University Park, PA 16802. E-mail: mxc69@psu.edu

VITAMIN D AND AUTOIMMUNITY

Autoimmune diseases are diseases where the immune system's ability to discriminate between self- and non-self tissue fails. People with diseases like multiple sclerosis (MS), arthritis, and IBD have T cells that target self and drive the immune system to induce inflammation in the peripheral tissues. The causes of the inappropriate immune attacks are not known; however, it is clear that both genetic and environmental factors contribute to the etiology of these diseases.

T cells have been shown to be central for the pathology of autoimmune disease. Specifically, type 1 helper (Th1) cells, which secrete interferon- γ (IFN- γ) and tumor necrosis factor- α (TNF- α) have been shown to transfer autoimmune disease in mice. Treatments that can directly or indirectly block Th1 cell function are effective for suppressing autoimmunity. Type 2 helper cells (Th2) secrete interleukin 4 (IL-4), which inhibits the differentiation of Th1 cells. Other regulatory T cells produce transforming growth factor- β 1 (TGF- β 1) or IL-10, which also inhibit Th1 effector cell function.

Vitamin D status has been linked to autoimmune diseases in humans. Recently a large population study (Nurses Health Study I and II) showed that women in the highest quintile of vitamin D intake had a 40% reduced rate of developing MS⁶. Similarly, vitamin D intake was inversely associated with rheumatoid arthritis in the Women's Iowa Health Study, which contained data from 29,368 women⁷. Experimentally it has been shown that vitamin D deficiency exacerbates both IBD and MS in animals^{8,9}. Further, D-hormone has been shown to suppress experimental MS and IBD in mice^{8,9}. Interestingly, D-hormone has been shown to effectively inhibit autoimmunity even when animals were vitamin D sufficient.

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2005. All rights reserved.

Cantorna and Mahon: D-hormone and the immune system

Table 1. In vivo effects of D-hormone in mice with targeted gene deletions.

Genotype	Effects of D-hormone	Experimental Models Tested	References
Wildtype	Suppressed	MS, lupus, IBD, arthritis, type-1 diabetes	5,8,9,16,17
IL-4 KO	Reduced	MS	11
VDR KO	No effect	MS	12
IL-2 KO	No effect	IBD	13
IL-10 KO	Suppressed	IBD	9

IN VIVO TARGETS OF D-HORMONE

In vivo targets of the D-hormone in experimental MS include a number of inflammatory cytokines (Table 1). Dhormone treatment of mice with experimental MS resulted in inhibition of lymphocyte accumulation in the lymph nodes¹⁰. Mice treated with the D-hormone had fewer cells secreting TNF- α and IFN- γ^{10} . In addition, D-hormone treatment increased the level of IL-4 and TGF-1 produced in the animals¹⁰. The ability to produce IL-4 is important for the function of D-hormone, since D-hormone treatment was ineffective for suppressing experimental MS in mice that were deficient in IL-4 (IL-4 KO, Table 1)¹¹. As expected, D-hormone was ineffective at inhibiting experimental MS in VDR KO animals¹². Vitamin D deficiency accelerated the development of IBD in IL-10 KO mice, and colitis symptoms in IL-10 KO mice were suppressed by D-hormone treatment (Table 1)⁹. Conversely, the colitis that develops in IL-2 KO mice was unaffected by vitamin D status¹³. In addition, colitis in IL-2 KO mice was not suppressed by D-hormone treatment (Table 1)¹³. The net result of D-hormone treatment in experimental autoimmunity includes decreased symptoms, which parallel the reduced production of Th1 associated cytokines and TNF- α , and a concomitant increase in cytokines that correspond to the resolution of inflammation and decreased severity of autoimmunity. IL-4 and IL-2 production have been shown to be crucial for the effectiveness of D-hormone in experimental autoimmunity. Overall, the action of D-hormone in vivo functions to suppress autoimmunity by inhibiting Th1 cell associated responses and increasing Th2 and other regulatory T cell processes.

NOVEL D-HORMONE TARGETS IN THE COLON OF MICE WITH EXPERIMENTAL IBD

When D-hormone targets were probed in experimental IBD, results were consistent with previous findings: Untreated vitamin D deficient IL-10 KO mice developed more severe IBD, as shown by larger small intestine/body weight ratios (9.0 \pm 0.6%) compared to the D-hormone treated IL-10 KO mice (6.5 \pm 0.7%). Based on the high expression of TNF- α in the colons of IL-10 KO mice (data not shown), microarray analysis was done using colon tissue. Microarray analysis was performed exactly as described¹⁴ and repeated once using total RNA from

different mice (Tables 2 and 3). The inclusion criteria for genes reported were (1) the gene was up- or downregulated 2-fold or more in one of the experiments, (2) the gene was up- or downregulated by 1.3-fold or more in the second experiment in the same direction as the first, and (3) the microarray spot for the gene had a combined median fluorescent intensity (median green fluorescence median background + median red fluorescence median background) of more than 100 on both array replicates. Two hundred thirty-nine downregulated (Table 2) and 298 upregulated (Table 3) potential targets of the D-hormone were identified using these criteria.

Table 4 shows the results for 6 genes. The expression of VDR is known to be positively regulated by the D-hormone. As expected, D-hormone treatment of the IL-10 KO mouse increased the expression of VDR mRNA in the colons of D-hormone treated mice. Interestingly, calmodulin and calcium binding protein A6 (calcyclin) are expressed in colonic tissue, and it seems reasonable that vitamin D would increase expression of these calcium regulators. Three genes (TNF- α , lipopolysaccharide-induced TNF- α factor, and TNF receptor) involved in the regulation of TNF- α were inhibited by D-hormone in the colons of IL-10 KO mice. The inhibition of these TNF- α related genes by D-hormone correlated with decreased severity of colitis in D-hormone treated IL-10 KO mice. Elevated TNF- α secretion has been shown to play a role in Crohn's disease, and treatments that inhibit TNF- α secretion have been shown to be effective for treating IBD in humans.

D-HORMONE SELECTIVELY REGULATES IMMUNE FUNCTION

Clearly, D-hormone is a potent suppressor of autoimmune diseases. Based on the ability of the D-hormone to suppress autoimmunity and to prolong allograft survival, scientists have labeled it "immunosuppressive". However, the effect of the D-hormone on immune function has not been shown to be broadly immunosuppressive. D-hormone treatment was tested for an effect on the ability of a host to fight an infection with *Candida albicans* or Herpes simplex virus¹⁵. Mice were treated with the Dhormone at levels previously shown to be effective at prolonging allograft transplants¹⁵. As controls, mice were

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2005. All rights reserved.

Table 2. Genes downregulated by D-hormone in whole colon tissue of IL-10 knockout mice. *The ratio is the inverse of the average of the median intensities of red fluorescence over green fluorescence. Negative ratios represent the factor by which genes were inhibited by D-hormone treatment. All values are the means of 2 independent experiments.

GenBank Accession			Combined Median
No.	Name	Ratio*	Intensities
X02339	CD3 antigen delta polypeptide	-1.65	318
D16313	Krt1-15	-1.66	891
X97817	Sema5a	-1.66	753
AJ243590	Drg2	-1.7	1074
AF030896	I kappa B epsilon	-1.74	384
M68489	Thymidine kinase 1	-1.76	736
D87902	ADP-ribosylation factor 5	-1.76	10399
AF069953	Gng3	-1.77	632
AF164119	Binder of Rho GTPase 3	-1.77	3346
M33151	Histocompatibility 2 L region	-1.78	26765
AF171100	LPS-induced TNF-alpha factor (LITAF)	-1.8	4392
L24118	TNF alpha-induced protein 2	-1.82	734
AF109918	Tomm40	-1.82	815
AF218249	Atp6n1	-1.84	997
	Host cell factor C1	-1.85	1476
	4 Cysteine knot 1, BMP antagonist 1	-1.85	1126
L02844	CD22 antigen	-1.88	1366
M91000	Somatostatin receptor 3	-1.88	750
U20372	Calcium channel beta 3 subunit	-1.89	2965
	1 K+ voltage-gated channel subfamily H, 3	-1.9	307
		-1.9	666
M93275	Adipose differentiation related protein		1100
U76306	Solute carrier family 6, member 2	-1.92	
AF159090	MHC psoriasis candidate gene	-1.92	811
AF139221	Immunoglobulin kappa chain variable 28	-1.93	843
M81445	Gap junction membrane protein beta 2	-1.94	
AF097512	Peroxisomal biogenesis factor 14	-1.95	875
U08354	Melanocortin 5 receptor	-1.95	
U47543	Ngfi-A binding protein 2	-1.97	
NM_01073	9 Lymphocyte antigen 64	-1.98	
U46923	G protein-coupled receptor 19	-1.98	701
U58888	SH3 domain protein 3	-2.01	259
L29468	Cofilin 2 muscle	-2.02	750
D86725	Mini chromosome maintenance deficient 2	-2.06	490
U51014	Peptidase 4	-2.06	738
AF039663	Prominin	-2.08	571
M55412	Guanine nucleotide binding protein alpha q	-2.08	379
AJ222969	Periaxin	-2.08	854
U89906	Alpha-methylacyl-CoA racemase	-2.08	263
M60778	Integrin alpha L	-2.1	950
AF126427	Mab-21-like 2	-2.11	721
D14883	Kail	-2.11	2997
NM_01386	3 Bcl2-associated athanogene 3	-2.11	530
AF162768	EST AF007010	-2.12	18153
U43186	Map3k2	-2.13	257
	GABA-A receptor subunit gamma 3	-2.13	

-2.32 2589 -2.33 2013 pe -2.34 275 -2.34 431 4 -2.36 2183 -2.38 1471 -2.38 465 -2.39 548 -2.4 362 ha 3 -2.43 298 13 -2.43 2911 -2.47 415 628 factor -2.47 -2.49 477 gene c -2.5 249 -2.51 342 -2.52 705 ne) -2.54 563 -2.54 2081 -2.56 371 230 fragment 3 -2.58 443 -2.59 ne -2.6 380 360 -2.6 417 -2.62 ype I beta -2.63 496 subunit -2.63 248 -2.64 506 -2.65 532 ember 3 mily H, 2 434 -2.65 -2.65 277

612

1982

1216

263

1829

225

433

698

2346

379

2043

1952

681

1382

332

460

-2.14

-2.16

-2.16 -2.16

-2.16

-2.17

-2.17

-2.19 -2.2

-2.21

-2.22

-2.23

-2.23

-2.27

-2.27

-2.29

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2005. All rights reserved.

Cantorna and Mahon: D-hormone and the immune system

\$91144	Selectin platelet (p-selectin) ligand	-2.66	849	AB019374 Mitogen activated protein kinase kinase
700769	Integrin beta 1 (fibronectin receptor be	-2.68	747	J03880 UDP-Gal:betaGlcNAc beta 14
4 13446	Tubulin alpha 2	-2.68	583	AF202893 Kinesin family member 21B
J18366	Cardiotrophin 1	-2.77	1264	AJ003128 Huntingtin-associated protein 1
VM_013754	Insulin-like 6	-2.82	5131	X66473 Matrix metalloproteinase 13
J 76832	Syntaxin 4A (placental)	-2.83	420	AF176098 Polymerase (DNA directed) mu
AF082348	Bone morphogenetic protein 15	-2.84	477	AF092921 Cysteine rich protein
AB02886 0	Hsp40 homolog subfamily B member 12	-2.85	493	NM_013620 Olfactory receptor 68
K6883 7	Secretogranin II	-2.87	338	U92793 Alpha glucosidase 2 alpha neutral subu
AF047542	Cytochrome P450 2c37	-2.89	494	AB022600 Membrane cofactor protein
J45665	Cut-like 2	-2.89	241	AF027865 Butyrophilin-like 2
M86390	Moesin	-2.92	511	NM_009428 Transient receptor protein 5
AB040710	Carbohydrate sulfotransferase 7	-2.92	708	NM_011976 Ig, TM and short cytoplasmic domain
U90123	Hematologica/neurological expressed seq 1	-2.93	325	AJ223206 Scrapie responsive gene 1
AB041556	RIKEN cDNA 1110020M21 gene	-2.97	448	X79003 Integrin alpha 5 (fibronectin receptor a
AB030183	RIKEN cDNA 2010004O20 gene	-2.98	1204	AJ243502 Fatty acid-Coenzyme A ligase long ch
AF016190	Gap junction channel protein alpha 9	-3	360	X87671 SH3-domain binding protein 1
AF055666	Kinesin light chain 2	-3.03	393	AE000665 Mus musculus TCR beta locus
NM_01070	1 Leukocyte cell derived chemotaxin 1	-3.03	227	X16511 Homeo box C6
AF127245	Selected mouse cDNA on the X	-3.04	1732	AF069954 G protein gamma 3 linked gene
U00445	Glucose-6-phosphatase catalytic	-3.04	395	L32836 S-adenosylhomocysteine hydrolase
AF004927	Opioid receptor sigma 1	-3.06	1661	X67685 Ubiquitin-like 1
AB018421	Cytochrome P450 4a10	-3.07	752	AF047726 Cytochrome P450 2c39
AF216832	Gap junction channel protein alpha 4	-3.12	374	AB041581 RIKEN cDNA 2600017P10 gene
AB032605	Piwi like homolog 1 (Drosophila)-like	-3.13	420	Z14249 Mitogen activated protein kinase 3
D10911	A disintegrin and metalloprotease domain	-3.13	5659	AF121081 Solute carrier family 37
AF093671	Peroxisomal biogenesis factor 11b	-3.17	571	U86090 Kinesin family member 5B
AF140683	F-box and WD-40 domain protein 2	-3.18	837	X52101 Polypyrimidine tract binding protein
X70887	FK506 binding protein 4 (59 kDa)	-3.18	772	X69722 Insulin receptor substrate 1
NM_01133	9 Inducible cytokine subfamily B, member 15	-3.21	611	M16356 Major urinary protein 2
- AB006329	SRY-box containing gene 13	-3.23	498	U37500 RNA polymerase II 1
AJ252157	Forkhead box O1	-3.24	327	M83380 (v-rel) oncogene related B
X14897	FBJ osteosarcoma oncogene B	-3.24	593	NM_020494 DEAD/H box polypeptide 13
U88566	Secreted frizzled-related protein 1	-3.26	511	AF176523 F-box and leucine-rich repeat protein
X97227	CD53 antigen	-3.3	603	X14759 Homeo box msh-like 1
U95736	Friedreich ataxia	-3.31	1194	Y15110 Glial cell line derived neurotrophic fa
U26176	Somatostatin receptor 4	-3.31	466	AF195056 VPS10 domain receptor protein SOR
M 86751	Immunoglobulin kappa chain variable 28	-3.32	449	U02554 Serum amyloid A 4
L20899	RAS nucleotide-releasing factor 1	-3.34	595	Mouse Mouse mRNA for TI-227
AF184900	-	-3.34	300	X63615 Calcium/calmodulin-dependent protei
AF227149		-3.38	664	L27990 Sjogren syndrome antigen A1
M31654	Growth hormone releasing hormone	-3.41	564	AF035399 Neurotrophic tyrosine kinase receptor
Y13344	Adenosine A2a receptor	-3.42	963	M83344 Pregnancy specific glycoprotein 17
¥14334	Arachidonate 12-lipoxygenase 12R type	-3.43	255	X72862 Adrenergic receptor beta 3
D70848	Zinc finger protein of the cerebellum 2	-3.44	313	AF181984 Ca2+/calmodulin-dependent kinase P
X60831	Transcription factor UBF	-3.44	736	X65635 Melanocortin 1 receptor
			-	AF057526 Rhesus blood group-associated A gly

The Journal of Rheumatology 2005, Volume 32 Supplement 76

242

326

246

606

388

626

351

342 521

312 858

750 738

428

558

422

936

1333

221 1020

246

1522

761

319 253

1261

317

327

526 283

693

347

408

405

1090

1091

180

761

757

610

715 2057

2502

410

443

391 759

[
D89902	Keratin-associated protein 6-2	-4.95	254
M75721	Serine protease inhibitor 1-1	-4.95	1262
AF011422	Vomeronasal organ family 2 receptor 12	-4.97	252
AF218253	ATPase H+ transporting lysosomal I	-5.08	688
AF096867	Synapsin II	-5.09	1316
AF078905	Hemoglobin X alpha-like embryonic chain	-5.11	776
AB010149	Adenylate cyclase activating polypeptide	-5.12	746
D84376	Phosphatidic acid phosphatase 2a	-5.12	331
L29006	Solute carrier family 7 member 2	-5.13	656
X82687	RIKEN cDNA 1810027001 gene	-5.21	482
NM_013909	F-box and leucine-rich repeat protein 6	-5.28	339
X58250	H2.0-like homeo box gene	-5.32	439
AJ131357	Chemokine (C-C) receptor 10	-5.35	355
X00479	Cytochrome P450 1a2	-5.54	835
AF033201	Cleavage and polyadenylation specific factor 4	-5.55	1107
AL078630	GABA B receptor 1	-5.68	549
AJ011107	Mus musculus mRNA for 3'UTR of Clc1 gene	-5.9	1046
AJ236881	SHP2 interacting transmembrane adaptor	-5.98	469
AF083876	Epithelial membrane protein 2	-6	314
AF045663	RAD9 homolog (S. pombe)	-6.16	589
X94998	Fibromodulin	-6.25	387
AB024427	Ring finger protein 11	-6.31	884
AF082526	Mitogen activated protein binding protein	-6.46	729
L04538	Amyloid beta (A4) precursor-like protein	-6.59	764
AF104410	Vascular endothelial zinc finger 1	-6.8	357
AJ007396	Sal-like 2	-7.08	1291
AB003502	G1 to phase transition 1	-7.35	480
U19755	Thyroid transcription factor 1	-7.59	1698
AF050182	Period homolog 3	-7.63	213
NM_013616	Olfactory receptor 64	-7.66	826
L03529	Coagulation factor II (thrombin) receptor	-7.78	331
AJ010109	Adenylate kinase 1	-7.84	416
U29156	Epidermal growth factor receptor pathway	-8.07	391
D89787	Endothelial PAS domain protein 1	-8.27	226
U28405	Chemokine (C-C) receptor 1-like 1	-8.4	766
U73902	Emerin	-8.58	736
D45903	Syntaxin binding protein 1	-8.82	487
AB041616	Hypothetical protein MNCb-3350	-9.47	268
AB001737	Immunoglobulin kappa chain variable 28	-9.56	389
M75717	Serine protease inhibitor 1-5	-9.92	843
AF026216	Mitogen activated protein kinase kinase	-9.95	3198
AF047725	Cytochrome P450 2c38	-11.49	377
U81453	Myosin VIIa	-11.64	452
U80891	DNA segment KIST 4	-12.66	233
L10075	Immunoglobulin mu binding protein 2	-12.75	818
Z48781	Ephrin B1	-15.11	1897
AJ243572	Cyclic nucleotide gated channel beta 3	-16.09	444

AF073881	Mus musculus myotubularin homologous prot	16.12	489
AF132483	Cyclin-dependent kinase 6	-17.24	420
M32452	Carbonic anhydrase 1	-19.8	2070
M62541	Membrane-spanning 4-domains subfamily A	-21.74	643
X56842	Wingless-related MMTV integration site 3	-33.9	265
U38261	Superoxide dismutase 3 extracellular	-35.34	966

Cantorna and Mahon: D-hormone and the immune system

Table 3. Genes upregulated by D-hormone in whole colon tissue of IL-10 knockout mice. *The ratio is the average of the median intensities of red fluorescence over green fluorescence. Positive ratios represent the factor by which genes were increased by D-hormone treatment. All values are the means of 2 independent experiments.

GenBank Accession		n	Combined Median
No.	Name	Ratio*	Intensities
L31398	Dynamin 2	1.65	758
AB026432	Damage specific DNA binding protein 1	1.67	505
AF019661	Proteasome subunit, alpha type 5	1.67	1946
AF189817	Mus musculus evectin-2	1.67	4512
D29987	4-hydroxyphenylpyruvic acid dioxygenase	1.68	1446
AF109905	Chloride intracellular channel 1, clone MGC:6371	1.68	2809
NM_009304	Synaptogyrin 2	1.69	1199
M74149	Creatine kinase brain	1.69	3404
M25149	Transplantation antigen P91A	1.69	753
AF153449	RIKEN cDNA 1810009F08 gene	1.7	640
AF072370	Unc-51 like kinase 1	1.71	885
AF043285	Ribosomal protein S7	1.72	17448
Z31557	Chaperonin subunit 6a (zeta)	1.73	2699
U07159	Acetyl-Coenzyme A dehydrogenase	1.73	5404
X74856	Ribosomal protein L28	1.73	56327
J05277	Hexokinase 1	1.73	19786
AF10912	Efemp2	1.75	456
AF077002	Ywhah	1.76	514
M85078	Csf2ra	1.77	8942
U84903	Ribosomal protein L23-like	1.77	2786
D10715		1.77	559
AF093064	Drg1 Suntavin 8	1.77	913
	Syntaxin 8	1.78	6224
AF110520	RIKEN cDNA 2400007M02 gene		1242
D28117	Ppm1a	1.78	
Y10386	Serping1	1.78	4918
Y17159	Lymphocyte antigen 57	1.78	2812
X16834	Lectin galactose binding soluble 3	1.79	15847
AF119955	Programmed cell death 6 interacting protein	1.79	656
AF152838	Frap1	1.8	730
AF139179	P38ip-pending	1.82	801
X61434	Pkacb	1.82	960
AF132449	Smoothelin	1.82	1675
D31898	Ptprr	1.82	454
U96810	Suppressor of Ty 4 homolog 2	1.82	629
AF084548	Vasodilator-stimulated phosphoprotein	1.83	1715
X14194	Nidogen 1	1.83	707
U38981	RIKEN cDNA 0610009H04 gene	1.83	206
Y11682	Ribosomal protein mitochondrial S12	1.84	762
AF013490	Ptpn9	1.84	378
AF030559	Atp5b	1.84	3261
X73359	Amino-terminal enhancer of split	1.85	12513
L25885	Galgt1	1.85	1789
AB025405	Signal peptidase complex (18kD)	1.86	535
M29462	Malate dehydrogenase soluble	1.86	2017
17467706	manute denyth ogenase soluble	1.00	2017

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2005. All rights reserved.

1.88

1.88

1.89

1.89

1.9 1.9

1.9

1.91

1.92

1.92

1.92

1.93

1.93

1.93

1.93

1.95

1.95

1.96

1.97

1.97

1.99

2

2.01

2.01

2.01

2.02

2.02

2.02

2.03

2.03

2.03

2.04

2.04

2.05

2.05

2.06

2.06

2.07

2.08

2.08

2.09

2.09

2.09

2.1

2.1

2.1

563

1019

1752 1713

210

660

563

5124

2028

653

971

1025

2882

1164

699

1538

1994

239

301

317

708

334

312

5045

504

834

2723

538

981

1262

301

2371

1843

482

2805 1823

772

1607

1726

3802

1012

520

427

562

1266 3418

3787

D29016	Farnesyl diphosphate farnesyl transferase	2.11	1050	L21671 Epidermal growth factor receptor pathway
Z31555	Chaperonin subunit 5 (epsilon)	2.12	643	AF240630 IQ motif containing GTPase activating pr.
AF129888	Suppressor of initiator codon mutations	2.12	459	U31966 Carbonyl reductase 1
AB025099	Kruppel-like factor 5	2.13	3033	U16740 Capping protein alpha 1
M84145	Fumarylacetoacetate hydrolase	2.14	754	M93310 Metallothionein 3
U10406	Capping protein beta 1	2.15	4343	X60961 Cadherin 1
AF018952	Aquaporin 8	2.15	1340	AF217484 Interferon-stimulated protein (20 kDa)
M93422	Adenylate cyclase 6	2.17	629	AB032825 Transcription elongation factor A (SII)
M63961	Guanylate nucleotide binding protein 1	2.17	360	U40575 Single-minded 1
Z54179	Gene trap locus 3	2.18	295	U35312 Nuclear receptor co-repressor 1
NM_011185	Proteasome (prosome macropain) subunit b	2.18	1443	U36588 Transgelin
M32010	H2-K region expressed gene 4	2.19	2738	M25365 H1 histone family member 2
AF015790	Phospholipid scramblase 2	2.19	4015	AF249870 P53 apoptosis effector related to Pmp22
U62295	Cytochrome P450 2j6	2.2	1352	D89572 Syndecan 4
L32973	Thymidylate kinase family, LPS-inducible	2.21	363	X61432 Calmodulin
U37438	Crp-ductin	2.23	1392	Y07708 NADH dehydrogenase (ubiquinone) 1 alpha
AJ243964	Dickkopf homolog 3	2.23	478	U78085 Ribosomal protein S5
U04710	Insulin-like growth factor 2 receptor	2.24	983	AF090686 Transcobalamin 2
D31969	Vitamin D receptor	2.24	584	AF116268 Guanine nucleotide binding protein alpha
U59283	ATP synthase H+ transporting mitochon.	2.24	21637	AF047600 SMC-like 1
X6067 1	Villin 2	2.25	509	NM_010751 Max dimerization protein
X80899	Silica-induced gene 81	2.25	1195	AC002397 Dentatorubral pallidoluysian atrophy
AF119675	RAB25 member RAS oncogene family	2.25	5345	AF009513 Plasma glutamate carboxypeptidase
AJ002730	Ubiquitously transcribed tetratricopeptide	2.27	1064	L02918 Procollagen type V alpha 2
NM_009750	Brain expressed X-linked 3	2.28	1396	AB022100 Cadherin 13
U29402	Ribosomal protein large Pl	2.29	50772	AF234625 Pre-B-cell colony-enhancing factor
NM_011831	Insulin-like 5	2.31	3918	U30839 Voltage-dependent anion channel 3
X97755	Phenylalkylamine Ca2+ antagonist	2.31	2162	AF156958 NTF2-related export protein 1
Z31553	Chaperonin subunit 2 (beta)	2.32	759	D78647 Tyrosine 3-monooxygenase
U97170	Protein kinase inhibitor gamma	2.33	410	U15571 Amyloid beta (A4) precursor-like protein
AF133093	RIKEN cDNA 2310039H09 gene	2.37	430	U13393 Proteasome (prosome macropain) subunit b
M18186	Heat shock protein 84 kDa 1	2.38	3020	AJ400878 Predicted gene ICRFP703B1614Q5.6
AF076192	Protein phosphatase 2a catalytic subunit	2.38	3337	L01062 ATP synthase H+ transporting mitochon.
AB031386	RIKEN cDNA 1810009M01 gene	2.38	2513	X73959 Tenascin X
AF134858	Espin	2.39	486	NM_009897 Creatine kinase mitochondrial 1
U30840	Voltage-dependent anion channel 1	2.4	432	AF004591 ATX1 (antioxidant protein 1) homolog 1
AF151637	Postsynaptic protein Cript	2.41	1345	AF030343 Enoyl coenzyme A hydratase 1 peroxisomal
U73445	Dihydrolipoamide dehydrogenase	2.41	1157	M64298 ATPase H+ transporting lysosomal
AF096285	Serine/threonine kinase receptor associa	2.42	963	M22432 Eukaryotic translation elongation factor
AF064748	Plasma membrane associated protein S3-12	2.43	392	AF129086 STIP1 homology and U-Box containing prot.
AB041557	Similar to RAP1 protein	2.44	22958	X95403 RAB2 member RAS oncogene family
D13759	Mitogen activated protein kinase kinase	2.45	954	X52940 Cytochrome c oxidase subunit VIIc
NM_011875	Proteasome (prosome macropain) 26S	2.47	1024	D00926 Transcription elongation factor A (SII)
¥12229	Utrophin	2.47	541	X59990 Catenin alpha 1
AF144101	Succinate-CoA ligase GDP-forming alpha	2.48	2778	AF035527 Ets homologous factor
U77083	Alanyl (membrane) aminopeptidase	2.48	352	Y11929 Coxsackievirus and adenovirus receptor
AF240469	Nicastrin	2.5	616	AF098508 Dynactin 3

Cantorna and Mahon: D-hormone and the immune system

2377

5744 1081

554

591

7810 1431

1000

16734

733 62175

1858

741

2654

8271 3845

15811

481

6012

567

542

300

271

626

223

417

7509

300 1701

1107

478

597 712

450

1948

4422

1408

1370 15080

592 3083

16378 651

1301

526

3968 744

2.5 2.5

2.5 2.5

2.51

2.53

2.54

2.55 2.58

2.6

2.6 2.6

2.6

2.62

2.62

2.62 2.62

2.64

2.65

2.65

2.67

2.67

2.67

2.69

2.69

2.72

2.73

2.73

2.73

2.74 2.75

2.76

2.77 2.78

2.78

2.79

2.8

2.81

2.81 2.82

2.85 2.86

2.86

2.86 2.87

2.9

2.9

AB011473	Prefoldin 5	2.92	2386	29639 Hydroxylacyl-Coenzyme A dehydrogenase	3
AB030192	Atp5j2	2.93	21114	F133093 Isocitrate dehydrogenase 3 (NAD+) gamma	3
M91458	Sterol carrier protein 2	2.94	300	06047 Glutathione S-transferase alpha 4	4
J43512	Dystroglycan 1	2.94	1762	F029844 Eukaryotic translation elongation factor	4
.01640	Cyclin-dependent kinase 4	2.94	468	65636 Proteasome (prosome macropain) subunit b	4
	Sulfide quinone reductase-like	2.95	427	B031292 Proteolipid protein 2	4
B010828	Craniofacial development protein 1	2.96	1269	66532 Lectin galactose binding soluble 1	4.
	Peroxisomal membrane protein 3 35 kDa	2.96	311	62952 Ribosomal protein L19	4.
		2.90	525	F159368 Programmed cell death 10	4.2
	Kruppel-like factor 9			62867 Y box protein 1	4.3
4J24998 7	Taf2h	2.99	1736	F117109 Kruppel-like factor 4 (gut)	4.4
04953	Gelsolin	2.99	1277	90225 Pleiotrophin	4.4
AB030185	Edfl	3.01	1746	F058956 Succinate-Coenzyme A ligase GDP-forming	4.4
F087695	Vertebrate homolog of C. elegans Lin-7	3.02	447	M_011607 Tenascin C	4.4
(03672	Melanoma X-actin	3.04	37296	-	4.4
126689	Actin gamma 2 smooth muscle enteric	3.11	4345	F020185 Dynein cytoplasmic light chain 1	
F236069	Ribosomal protein L29	3.12	1527	99921 S100 calcium-binding protein A13	4.4
49022	Calponin 1	3.18	6458	F186115 Transmembrane protein 4	4.5
M_009900	Chloride channel 2	3.2	739	Transcription elongation factor B (SIII)	4.5
40632	Ankyrin 3 epithelial	3.21	1511	F020039 Isocitrate dehydrogenase 1 (NADP+)	4.6
64837	Ornithine aminotransferase	3.22	604	F033566 CDC like kinase 4	4.6
37091	Carbonic anhydrase 4	3.24	1206	04280 Ribosomal protein L12	4.6
16256	Basigin	3.27	4600	55316 Nuclear transcription factor-Y beta	4.6
48363	Nascent polypeptide-associated complex a	3.28	869	B027237 Aldo-keto reductase family 1 member C12	4.6
B031550	Phosphatidylcholine transfer protein	3.3	2782	99054 Acid phosphatase 5 tartrate resistant	4.1
F038632	Mpv17 transgene kidney disease mutant	3.32	15700	M_007694 Chromogranin B	4.8
				M_010887 Ndufs4	4.8
F006482	Entpd5	3.33	673	F068921 Suppressor of clear C. elegans homolog	4.9
F053367	PDZ and LIM domain 1	3.37	332	04724 Insulin II	5.2
236270	TGFB inducible early growth response	3.39	434	F263743 Erbb2 interacting protein	5.3
A 64403	Cyclin D1	3.41	365	87685 Sterol carrier protein 2 pseudogene 2	5.4
086609	RNA polymerase 1-3 (16 kDa subunit)	3.48	1424	46845 Glucagon	5.5
F004934	Serine/threonine kinase 25	3.48	2294	32240 Peripheral myelin protein 22 kDa	5.6
(15962	Ribosomal protein S12	3.49	12269	49112 Programmed cell death 6	5.6
13297	Actin alpha 2	3.49	18971	64278 Chromogranin A	5.6
666449	Calcium binding protein A6 (calcyclin)	3.52	68381	B004789 Dolichol-phosphate mannosyltransferase 1	5.7
M_011862	Protein kinase C and casein kinase	3.53	382	08115 CD9 antigen	5.8
61431	Diazepam binding inhibitor	3.53	585	08702 Neuronal protein 15.6	5.8
129464	Platelet derived growth factor alpha	3.53	2216	22550 Desmin	6.0
11505	Serine protease inhibitor Kazal type 4	3.58	3437		
F158022	Ribosomal protein L23	3.6	46177	F085809 Synapsin I	6.1
111686	Keratin complex 1 acidic gene 18	3.62	1262	F216207 Ribosomal protein S19	6.2
8116	Peroxisome proliferator activator receptor	3.66	1876	B017156 Chloride channel calcium activated 3	6.3
F260271	Ribosomal protein L9	3.69	1305	113019 Thymidylate synthase	6.3
60001	Histidine triad nucleotide-binding protein	3.79	7562	(11130 Serum amyloid A 2	6.4
M 76763	Ribosomal protein S18	3.89	28957	F047727 Cytochrome P450 2c40	6.6
D10464	RIKEN cDNA 0610007D04 gene	3.9	12243	16319 Signal recognition particle 54 kDa	6.7
AF093853	Peroxiredoxin 5 related sequence 3	3.92	8254	67771 Ribosomal protein L8	6.7
1.023633	r eroxitedoxili 5 related sequence 5	3.74	0207	13071 26S proteasome-associated pad1 homolog	7.0

The Journal of Rheumatology 2005, Volume 32 Supplement 76

M83749	Cyclin D2	7.33	709
M27347	RIKEN cDNA 1810009A17 gene	9.52	3985
AF119390	Sialyltransferase 10 (alpha-23-sialyltra	9.56	775
U57051	Homeo box B13	10.05	1127
AF044262	Anterior gradient 2	11.45	3645
X53929	Decorin	11.59	4144
D85391	Carboxypeptidase D	12.15	436
U50413	Phosphatidylinositol 3-kinase (p85 alpha)	13.11	560
X04574	Trypsin 2	13.75	355
AF076532	Kcne3	13.78	490
AB029487	Sulfotransferase family 1A, member 1	21.05	2460
X04573	Elastase 2	26.6	863
AF051102	Gamma-glutamyl hydrolase	48.81	476

Table 4. D-hormone targets 3 TNF-α related genes in the colon of mice with experimental IBD.

Gene	Experim	ient 1	Experim	ent 2
	Intensity*	Ratio**	Intensity	Ratio
TNF-α	414	-2.1	309	-2.7
LPS-induced TNF- α factor [#]	4267	-1.7	4516	-1.9
TNF receptor	3494	-1.7	163	-3.1
VDR	745	2.6	422	1.9
Calmodulin	4663	1.7	11878	3.6
Calcium Binding Protein A6	97601	2.3	39160	4.7

* Combined median red and green intensities.

** The ratio is either the ratio of green fluorescence over red fluorescence (positive values) or the inverse (negative values). Positive ratios represent genes that are activated in the presence of D-hormone and negative ratios represent genes that are repressed in the presence of D-hormone.

LPS-induced TNF- α factor was reanalyzed using quantitative real-time PCR. The expression of this gene was 4 to 461 times lower in colons of D-hormone treated IL-10 KO mice (n=4) compared to the D-control (n=4) colons. The microarray underestimated the efficacy of D-hormone to inhibit LPS-induced TNF- α .

either not treated or treated with the immunosuppressive drug cyclosporin A. The mice treated with cyclosporin A showed reduced survival following *C. albicans* and H. simplex infections¹⁵. Conversely, the D-hormone treated mice were not different from the untreated controls in their ability to survive either the *C. albicans* or the H. simplex infections¹⁵. D-hormone did not alter the ability of the host to mount an immune response to either *C. albicans* or H. simplex.

Asthma is a disease that is driven by Th2 cells responding to environmental antigens. Based on the ability of Dhormone to upregulate the Th2 cell response, we hypothesized that D-hormone might exacerbate experimental asthma. Two strains of mice were treated with D-hormone and then induced to develop experimental asthma. There was no effect of D-hormone on the inflammation and epithelial hyperplasia in the lungs of mice with asthma. Interestingly, VDR KO mice were also induced to develop asthma; however, asthma failed to develop in the lungs of these mice. The absence of inflammation in the lungs of VDR KO mice induced to develop experimental asthma suggests an important role for vitamin D signaling in the development of inflammation in the lungs. The D-hormone, however, had no effect on the severity of experimental asthma in mice. Together these data suggest that the D-hormone is a selective regulator of the immune system.

CONCLUSIONS

The *in vivo* effect of vitamin D status on immune function depends on the nature of the immune challenge. The most dramatic effects of D-hormone on the immune system seem to be in the control of Th1-driven autoimmunity. D-hormone had no effect on the ability of the host to fight infections with *C. albicans* and H. simplex. In addition, Th2-driven asthma was not affected by D-hor-

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2005. All rights reserved.

mone treatment. The vitamin D or VDR-deficient host has elevated Th1 cell responses and diminished Th2 associated responses. In the absence of the VDR, Th1-driven IBD is more severe and Th2-driven asthma does not develop. The evidence suggests a model where the effectiveness of D-hormone treatment of autoimmune diseases comes as a result of the inhibition of the development and function of Th1 cells and the induction of other CD4+ T cells including Th2 cells. The mechanisms underlying the paradoxical effects of D-hormone on autoimmune diseases and lack of effect on experimental asthma and infectious host resistance are still not known.

Glucocorticoids are broadly immunosuppressive drugs commonly used to treat a variety of diseases including autoimmune diseases. Autoimmune patients are at an elevated risk of developing osteoporosis as a result of the increased inflammation and glucocorticoid use. Studies have shown that D-hormone can increase bone mineral density and improve other bone markers in patients with IBD and MS. Clearly, there are direct effects of the Dhormone on bone health. It is also possible that the Dhormone mediates a reduction in inflammation that indirectly inhibits bone disease by halting further bone destruction. Little is known about the effect of vitamin D supplementation or D-hormone treatment on the severity of human autoimmune diseases. However, the potential benefits of D-hormone treatment for patients with autoimmune diseases include a reduction in glucocorticoid use, a reduction in the symptoms of their disease, and increased bone mineral density.

REFERENCES

- Fritsche J, Mondal K, Ehrnsperger A, Andreesen R, Kreutz M. Regulation of 25-hydroxyvitamin D3-1 alpha-hydroxylase and production of 1 alpha 25-dihydroxyvitamin D3 by human dendritic cells. Blood 2003;102:3314-6.
- Deluca HF, Cantorna MT. Vitamin D: its role and uses in immunology. FASEB J 2001;15:2579-85.
- Langub MC, Reinhardt TA, Horst RL, Malluche HH, Koszewski NJ. Characterization of vitamin D receptor immunoreactivity in human bone cells. Bone 2000;27:383-7.
- 4. O'Kelly J, Hisatake J, Hisatake Y, Bishop J, Norman A, Koeffler

HP. Normal myelopoiesis but abnormal T lymphocyte responses in vitamin D receptor knockout mice. J Clin Invest 2002;109:1091-9.

- Froicu M, Weaver V, Wynn TA, McDowell MA, Welsh JE, Cantorna MT. A crucial role for the vitamin D receptor in experimental inflammatory bowel diseases. Mol Endocrinol 2003;17:2386-92.
- Munger KLM, Zhang SM, O'Reilly E, et al. Vitamin D intake and incidence of multiple sclerosis. Neurology 2004;62:60- 5.
- Merlino LA, Curtis J, Mikuls TR, Cerhan JR, Criswell LA, Saag KG. Vitamin D intake is inversely associated with rheumatoid arthritis: results from the Iowa Women's Health Study. Arthritis Rheum 2004;50:72-7.
- Cantorna MT, Hayes CE, DeLuca HF. 1,25-Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc Natl Acad Sci USA 1996;93:7861-4.
- Cantorna MT, Munsick C, Bemiss C, Mahon BD. 1,25-Dihydroxycholecalciferol prevents and ameliorates symptoms of experimental murine inflammatory bowel disease. J Nutr 2000;130:2648-52.
- Cantorna MT, Woodward WD, Hayes CE, DeLuca HF. 1,25dihydroxyvitamin D3 is a positive regulator for the two antiencephalitogenic cytokines TGF-beta 1 and IL-4. J Immunol 1998;160:5314-9.
- Cantorna MT, Humpal-Winter J, DeLuca HF. In vivo upregulation of interleukin-4 is one mechanism underlying the immunoregulatory effects of 1,25-dihydroxyvitamin D(3). Arch Biochem Biophys 2000;377:135-8.
- 12. Meehan TF, DeLuca HF. The vitamin D receptor is necessary for 1-alpha 25-dihydroxyvitamin D(3) to suppress experimental autoimmune encephalomyelitis in mice. Arch Biochem Biophys 2002;408:200-4.
- Bemiss CJ, Mahon BD, Henry A, Weaver V, Cantorna MT. Interleukin-2 is one of the targets of 1,25-dihydroxyvitamin D3 in the immune system. Arch Biochem Biophys 2002;402:249-54.
- 14. Mahon BD, Wittke A, Weaver V, Cantorna M. The targets of vitamin D depend on the differentiation and activation status of the CD4 positive T cells. J Cell Biochem 2003;89:922-32.
- Cantorna MT, Hullett DA, Redaelli C, et al. 1,25-Dihydroxyvitamin D3 prolongs graft survival without compromising host resistance to infection or bone mineral density. Transplantation 1998;66:828-31.
- Cantorna MT, Hayes CE, DeLuca HF. 1,25-Dihydroxycholecalciferol inhibits the progression of arthritis in murine models of human arthritis. J Nutr 1998;128:68-72.
- 17. Zella JB, DeLuca HF. Vitamin D and autoimmune diabetes. J Cell Biochem 2003;88:216-22.

Personal non-commercial use only. The Journal of Rheumatology Copyright © 2005. All rights reserved.

The Journal of Rheumatology 2005, Volume 32 Supplement 76