
The Journal of Rheumatology 2001, Volume 28, Supplement 6442

From the Division of Immunotherapy and Autoimmune Disease, and the
Division of Rheumatology, Northwestern University, Chicago, Illinois,
USA; and Department of Bone Marrow Transplantation, Hadassah
University Hospital, Jerusalem, Israel.

R.K. Burt, MD, Division of Immunotherapy and Autoimmune Disease; 
W. Barr, MD, Division of Rheumatology, Northwestern University; 
Y. Oyama, MD; A. Traynor, MD, Division of Immunotherapy and
Autoimmune Disease, Northwestern University; S. Slavin, MD, Department
of Bone Marrow Transplantation, Hadassah University Hospital.

Address reprint requests to Dr. R.K. Burt, Division of Immunotherapy and
Autoimmune Disease, 250 East Superior, Room 162, Chicago, IL 60611;
E-mail:rburt@nwu.edu

IMMUNOLOGY OF RHEUMATOID ARTHRITIS
Patients with coincidental rheumatoid arthritis (RA) treated
by allogeneic hematopoietic stem cell transplantation
(HSCT) for drug induced aplastic anemia have been fortu-
itously cured of RA1-4.

RA is an inflammatory disease of joints but may have
extraarticular manifestations including rheumatoid nodules,
interstitial pneumonitis, and vasculitis5,6. The etiology of
RA remains elusive. It is an immune mediated disease but
whether the response is directed against an infectious agent
or against an unknown self-epitope (i.e., autoimmune) or
both is unknown. If there is a predominate disease mediating
cell (T or B lymphocyte, macrophage or synoviocyte), its
identity also remains obscure.

Like many autoimmune diseases, RA is associated with
particular HLA genotypes7. Severe RA has been associated
with MHC class II DR4. Five RA prone alleles
(DRB1*0401, DRB1*0404, DRB1*0405, and DRB1*0101),
whose frequencies vary for different ethnic groups, all share
a similar amino acid epitope sequence (LLEQKRAA or
LLEQRRAA) encoded by codons 67–748,9. While the
prevalence of RA in the general population is 1 in 100
people, a heterozygote with any one of these alleles has an
increased risk for RA varying from 1 in 20 to 1 in 8010. In an
individual who has 2 HLA alleles associated with RA

(DRB1*0401 and DRB1*0404) the risk of developing RA is
1 in 710.

The HLA sequence 67–74 on RA associated alleles is a
HLA contact site for both peptide and T cell receptor
binding. This suggests HLA presentation of a common
infectious or self-antigen to T cells is involved in the patho-
genesis of RA. An infection may lead to RA through mole-
cular mimicry, bystander effects, or epitope spreading11-15.
Molecular mimicry arises from cross reactive T cell
responses to peptides that have similar homology11. The
immune response initiated against an infectious agent may
cross react with a self-peptide, leading to autoimmunity.
Alternatively, inflammatory reactions against an infection
may lead to bystander damage of normal tissues.
Presentation of self-peptides by activated antigen presenting
cells then precipitates the autoimmune disease. Once an
immune process starts, T cell responsiveness can spread to
other epitopes on the same or different peptides, a pheno-
menon termed determinant or epitope spreading12-15.

While MHC genes predispose to RA, the majority of
patients with RA associated MHC genes remain disease-
free. Environment and/or non-MHC genes must, therefore,
contribute towards development of disease. Adjuvant
arthritis (AA) and collagen induced arthritis (CIA) in rats
are models for RA and are induced by injection of adjuvant
or collagen and adjuvant, respectively16,17. At least 14
genomic intervals or loci (Cia1 to Cia14) are associated with
CIA18,19. The MHC loci correlate with Cia1. Putative genes
associative with non-MHC Cia regions include cytokines
such as interleukin 11 and transforming growth factor 
and growth regulating oncogenes such as B cell
leukemia/lymphoma3 (BCL3) and Bcl-2 associated X
protein (BAX)20,21. Mice with either AA or CIA, in which
environmental stimuli are necessary to induce arthritis, may
be cured by either autologous, syngeneic, or allogeneic
hematopoietic stem cell transplantation22-25. The lowest
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relapse rate occurs in animals receiving an allogeneic trans-
plant. Relapse after an autologous HSCT correlates
inversely with intensity of the immune suppression condi-
tioning regimen in various models of autoimmune diseases.

While RA may be an autoimmune disease, in some ways,
it may be viewed as similar to a malignant lymphoprolifer-
ative disorder. Hallmarks of malignancy are loss of growth
inhibition, oncogene mutations, and clonality. Fibroblast-
like synoviocytes from patients with RA show autonomous
ex vivo proliferation26,27, a behavior that may contribute to in
vivo cartilage destruction. One possible mechanism by
which cells escape growth inhibition is oncogene mutation.
Somatic mutations of the p53 oncogene occur in vivo within
involved joints and ex vivo in RA synoviocyte cultures28-30.
Skewing of B lymphocyte immunoglobulins and T cell
receptors suggests clonal expansion of both B and T
lymphocytes within inflamed RA synovium31-33. Similarly
to a malignancy, RA can cause severe disability and pain,
and can shorten life expectancy34-44. In summary, the
immunology of RA intersects traditional aspects of rheuma-
tology, autoimmunity, malignancy, and possibly infectious
diseases.

RESULTS OF AUTOLOGOUS HSCT TRIALS FOR
RA
If RA is caused by environmental exposure, brief but dose
intense immune suppression and autologous HSCT may
ablate the autoreactive immune cells and allow regeneration
of a new immune system. Several patients have undergone
autologous transplantation for lymphoma who had coinci-
dental RA45-47. The autografts were not purged of lympho-
cytes, and the transplants were not tailored as therapy for
RA. Nevertheless, short term complete responses were
observed for 4 months, 20 months, and at last followup
greater than 19 months45-47.

Since the rationale for autologous HSCT is to use high
dose chemotherapy to attempt ablation of the immune
system, autologous HSCT allows maximization of immune
suppression beyond otherwise marrow-limiting toxicity.
Autologous stem cells are infused to reinitiate
hematopoiesis and regenerate immunity. Based on testing
the premise of dose intense immune suppression, several
centers have reported early posttransplant outcomes when
RA is the only indication for autologous transplantation
(Table 1)48-54. In general, the procedure has been well toler-
ated without mortality. HSCT offers an almost immediate
relief of symptoms. Patients become pain-free, sometimes
for the first time in years. Activities required for daily living,
such as buttoning a shirt or combing hair, rapidly return to
normal. Morning stiffness resolves, rheumatoid nodules
disappear, sedimentation rate normalizes, and rheumatoid
factor may disappear.

Most of the protocols did not, however, increase immune
suppression to the point of myeloablation. In the most

common regimen used (200 mg/kg cyclophosphamide with
or without antithymocyte globulin), hematopoiesis would
recover even without stem cell infusion. While these studies
showed that relatively high dose chemotherapy was well
tolerated with marked American College of Rheumatology
(ACR) improvements (ACR 50 or ACR 70), a complete
remission was unusual and relapse within 2 years is
common. There are suggestions of a dose-response effect. A
dose escalation study of cyclophosphamide at 100 mg/kg
revealed transient 1–2 month responses, but at 200 mg/kg
response duration increased to 18–20 months50. The few
regimens that were myeloablative (busulfan and cyclophos-
phamide) seem to indicate more durable remissions51.

For an intense and expensive treatment such as HSCT to
be considered for RA, sustained complete remissions or
70% improvement as defined by the ACR must be
achieved55. Several modifications are being considered,
including: (1) using the current easily tolerated nonablative
yet highly immunosuppressive regimen with posttransplant
immune modulation, e.g., a tumor necrosis factor (TNF)
inhibitor, cyclosporine A, and/or methotrexate, (2) using a
more intense myeloablative regimen such as busulfan and
cytoxan, or (3) performing allogeneic HSCT.

One approach is to advance the current nonmyeloablative
stem cell transplants (Table 2) into phase III studies, but to
decrease the high relapse rate, add chronic posttransplant
immune suppression. This approach assumes that the post-
transplant disease is easier to control with immune suppres-
sion than prior to transplant. The risk of infections, which
are one of the major causes of death for patients with RA,
may increase with posttransplant immune suppression.
Implicit in this philosophy is acceptance of RA as an incur-
able but chronic and controllable disease.

A second approach is to view RA as a disease that is
potentially curable by reinduction of self-tolerance through
autologous HSCT. Since nonmyeloablative regimens
induced remission of refractory disease and a dose-response
effect may exist, phase I/II pilot studies using more intense
myeloablative regimens will be initiated in the hope of
inducing more durable remissions. A proposed regimen
includes fludarabine 25 mg/kg/day × 5 days plus oral
busulfan (4 mg/kg/day × 3 days) or intravenous Busulfex
(intravenous busulfan) (3.2 mg/kg/day × 3 days) versus a
regimen of cyclophosphamide (120–200 mg/kg) and
Busulfex (3.2 mg/kg/day × 3 days) (Table 3). If a high
percentage of patients continue to relapse following a
myeloablative regimen, an autologous transplant will prob-
ably be unlikely to cure and the regimen related toxicity of
more intense conditioning regimens would probably be
unacceptable.

ALLOGENEIC HSCT OF RA
Anecdotal case reports of patients transplanted for aplastic
anemia who had coincidental RA suggest that an allogeneic
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transplant may induce durable remissions (Table 4)1-4. Four
were reported in the 1970s when transplant related mortality
was higher than current standards1. Three died from trans-
plant complications1. Four patients are in complete remis-
sion for 4–8 years after transplant despite discontinuation of
all immune suppression1-3. In one patient, RA relapsed4.
Hematopoietic chimerism at a molecular level using poly-
merase chain reaction for VNTR (variable number of
tandem repeats) revealed 100% donor chimerism4. This
does not necessarily suggest that relapse arose from donor
immune cells. Evaluation of the involved organ system (i.e.,
joints) was not performed to determine if infiltrating
lymphocytes, macrophages, and reactive synoviocytes were

of donor or host origin. In addition, although clinically
normal, the serologic status of the donor (e.g., rheumatoid
factor) was not reported.

The rationale for allogeneic HSCT is to change the
genetic susceptibility to disease and also provide an allo-
geneic graft versus autoimmunity (GVA) effect56. Hence,
replacement of genetically susceptible host stem cells with
resistant donor hematopoietic cells may prevent recurrence
of the disease following transplantation even if the cause of
RA is still present in the host. Perhaps more important is that
it is very unlikely that the “last” self-reactive lymphocytes
can be eliminated by intensive chemoradiotherapy alone,
whereas after allogeneic bone marrow or blood stem cell

Table 1. Reports of autologous or syngeneic hematopoietic stem cell transplantation for RA.

Disease Conditioning Comment

RA49,52 CY, ATG (autograft 2-3 log Marked improvement up to 18 mo, 
lymphocyte depleted) but 2 relapsed

RA48 CY (autograft not lymphocyte depleted) Marked improvement 6 mo followup
RA50 CY (autograft not lymphocyte depleted) *Cohort I — CY 100 mg/kg, response for 1–2 mo

*Cohort II — CY 200 mg/kg — improved for
17–19 mo

RA54 CY, ATG (autograft not lymphocyte depleted) Relapsed at 5 and 7 mo
RA51 Bu, CY (autograft lymphocyte depleted) Remission > 10 mo
RA53 CY, ATG (identical twin) Remission > 24 mo

RA: rheumatoid arthritis; CY: cyclophosphamide; Bu: busulfan; ATG: antithymocyte globulin.

Table 2. Possible nonmyeloablative autologous stem cell transplantation.

Day –7 –6 –5 –4 –3 –2 –1 0*

Fludara Fludara Fludara Fludara
CY CY

ATG ATG ATG ATG
CD34

Day –7 –6 –5 –4 –3 –2 –1 0*

Fludara Fludara Fludara Fludara
CY CY

C-1H C-1H C-1H C-1H
CD34 or PBSC

* Some posttransplant immune modulation such as a TNF inhibitor, cyclosporine, or methotrexate will be used
as maintenance.
CY: cyclophosphamide, Fludara: fludarabine, C-1H: CAMPATH.

Table 3. Possible myeloablative autologous stem cell transplantation.

Day –8 –7 –6 –5 –4 –3 –2 –1 0*

Bu Bu Bu
CY CY CY CY

CD34

* No posttransplant maintenance therapy. Bu: Busulfex (0.8 mg/kg q 6 h), CY: cyclophosphamide (50
mg/kg/day).
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transplant all host hematopoietic cells can be replaced with
donor hematopoietic cells, resulting in elimination by
displacement of all self-reactive lymphocytes. Active cell
mediated GVA effects may arise from mature donor
lymphocytes eliminating, regulating, or inducing apoptosis
of recipient autoreactive cells. A graft versus disease effect
has already been established as the mechanism of remission

for several hematologic malignancies, first discovered in
1981 and termed graft versus leukemia (GVL)57,58. The
feasibility of alloreactive donor lymphocytes to eliminate all
hematopoietic cells of host origin, including malignant
lymphocytes that are fully resistant to all available chemora-
diotherapy, was documented in early 198759-61. In analogy,
clinical evidence for GVA effects has recently been

Table 4. Results of allogeneic hematopoietic stem cell transplantation in patients with aplastic anemia (AA) and
RA.

Transplant Autoimmune Type of Outcome for
Diagnosis Disease Transplant Autoimmune Disease

AA1 RA Allogeneic Remission, died 93 days after transplant
AA1 RA Allogeneic Remission, died 75 days after transplant
AA1 RA Allogeneic Remission, died 58 days after transplant
AA1 RA Allogeneic Remission for > 2 yrs
AA4 RA Allogeneic Relapsed after 2 yrs
AA2 RA Allogeneic Remission for > 6 yrs
AA3 RA Allogeneic Remission for > 8 yrs

Table 5. Possible allogeneic transplant regimens for patients with RA.

Day –7 –6 –5 –4 –3 –2 –1 0 +1

Fludara Fludara Fludara Fludara Fludara
B/C B/C

PBSC
CSA � � � � �

Day –7 –6 –5 –4 –3 –2 –1 0 +1

Fludara Fludara Fludara Fludara Fludara
C-1H C-1H C-1H C-1H

B/C B/C
PBSC

CSA � � � � �

T cell depleted (CD34+ enriched) graft
Day –8 –7 –6 –5 –4 –3 –2 –1 0/+1

Fludara Fludara Fludara Fludara Fludara Fludara
C-1H C-1H C-1H C-1H

B/C B/C
CD34+

CSA � � � �

Day –6 –5 –4 –3 –2 –1 0

Fludara Fludara Fludara Fludara Fludara
B/C B/C B/C

C-1H C-1H C-1H C-1H C-1H
CD34+

FK506/MMF � � � �

Fludara: fludarabine, C-1H: CAMPATH, CSA: cyclosporine, FK506/MMF: tacrolimus/mycophenolate mofetil,
CD34+: infusion of lymphocyte depleted, i.e., CD34+ enriched, allogeneic stem cells, B/C: use of either busulfex
or cyclophosphamide, PBSC: peripheral blood stem cells.
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reported56. While in theory a GVA effect may be beneficial,
the most significant toxicity of allogeneic HSCT is an
immunologic reaction of donor cells against normal host
tissues, a complication known as graft-versus-host disease
(GVHD). As a consequence, compared to autologous HSCT,
allogeneic transplants may be complicated by higher
morbidity and mortality, predominately due to GVHD. On
the other hand, it was recently documented that hazardous
myeloablative conditioning can be replaced with a much
safer nonmyeloablative stem cell transplant, also known as
mini-allograft62-64. Hence, it was documented that full and
rapid engraftment of donor hematopoietic cells and parallel
elimination of all host hematopoiesis can be accomplished
by immunosuppressive rather than myeloablative condi-
tioning, resulting in reduced procedure related toxicity and
mortality62-64. Unfortunately, despite major improvement of
the immediate outcome following HSCT, GVHD remains a
major obstacle. It remains to be seen if the potential benefit
of allogeneic HSCT justifies the risk of GVHD.

Based on the above, to be qualified for an allogeneic
nonmyeloablative HSCT, candidates should have failed
standard therapies and be in a high risk subset. There are
individuals with RA who have a 5 year mortality of
30–70%, a rate higher than for triple vessel coronary artery
disease or metastatic Hodgkin’s lymphoma65. These patients
may be identified by the number of involved joints or func-
tional status as assessed by a questionnaire on activities of
daily living (Health Assessment Questionnaire, HAQ).
Therapies for RA include corticosteroids and disease modi-
fying antirheumatic drugs such as hydroxychloroquine,
azathioprine, gold, and methotrexate. TNF inhibitors (inflix-
imab or etanercept) are promising new agents for RA66-68.
The failure rate for TNF inhibitors is 25–40% and all
patients relapse if therapy is stopped67,68. TNF inhibitors
have been associated with demyelinating disease, a fair
amount of serious and fatal infections, and a number of
cases of myelosuppression. Candidates for HSCT should
probably have failed combined TNF inhibitor and
methotrexate — failure being defined as patients with active
high risk disease such as 4–6 swollen joints, more than 20
involved joints, and being unable to answer more than 70%
of the HAQ “with no difficulty.” In summary, to justify the
risk-benefit of allogeneic HSCT, candidates should be
selected for refractory disease (despite TNF inhibitor and
methotrexate) that are at high risk for RA related mortality
(determined by number of involved joints and HAQ).

Transplant regimen related morbidity and mortality may
be markedly diminished by safer conditioning of patients
with nonmyeoloablative regimens designed to suppress the
immune system enough to allow donor engraftment.
Residual host hematopoiesis is eliminated by allogeneic
donor immune cells. Of about 80 patients undergoing autol-
ogous HSCT, mortality is roughly 2% (Snowden J, personal
communication). Regimen related mortality from a less

intense nonmyeloablative HSCT regimen should, therefore,
be under 2%. GVHD remains the major hurdle for safely
performing allogeneic transplantation.

Allogeneic transplant regimens being considered
include: (1) well tolerated conditioning involving the use of
nonmyeloablative regimens with unmanipulated marrow
cells, (2) nonmyeloablative regimens with unmanipulated
peripheral blood stem cells (PBSC), or (3) nonmyeloabla-
tive regimens with CD34+ enriched PBSC. In an unmanipu-
lated nonmyeloablative HSCT, the incidence of extensive
chronic GVHD remains controversial, but is probably
30–50%. Newer GVHD prophylactic agents currently under
investigation, such as humanized anti-CD52 (CAMPATH-
1H) given during conditioning, and newer posttransplant
agents such as mycophenolate mofetil or TNF inhibitors are
likely to diminish the incidence and severity of GVHD. This
may be particularly important in RA, which is a disease of
older individuals, especially considering that the risk of
GVHD increases with age.

Lymphocyte depletion (CD34+ enrichment) of an allo-
graft will markedly decrease the risk of GVHD but increase
the risk of graft failure. Engraftment is affected by intensity
of the conditioning regimen, the number of donor stem cells
infused, and the number of T cells facilitating engraftment.
The risk of graft failure may be partially offset by maxi-
mizing donor stem cell numbers (target dose ≥ 107 CD34+

cells/kg recipient weight)69. To minimize the morbidity of
allogeneic HSCT, nonmyeloablative, yet strongly
immunoablative conditioning could be combined with
CD34+ enrichment of donor stem cells (Table 2). The
regimen of CAMPATH-1H, cyclophosphamide, and
fludarabine would be intensely immune suppressive but not
myeloablative. In case the allograft is rejected, autologous
hematopoietic reconstitution would be anticipated within 2
weeks, with at least transient improvement or resolution of
RA. Indeed, a regimen currently being used to treat autoim-
mune diseases employs a nonmyeloablative transplant
conditioning regimen (cyclophosphamide 200 mg/kg)
without stem cell infusion70. If engraftment occurs with low
level (microchimerism) or mixed chimerism, indicative of
host-versus-graft tolerance, and the patient’s RA returns,
donor lymphocyte infusions could be given at escalating
doses until full donor chimerism is accomplished or RA
resolves. To minimize the risk of GVHD, donor lymphocyte
infusions would have to be carefully titrated with gradual
dose escalation over extended intervals to allow monitoring
for GVHD onset71. Temporal separation of donor progenitor
cell infusion from donor lymphocyte infusion may allow
clarification of the contribution of stem cell genetics versus
GVA in remission of RA.

Designing transplant protocols that minimize procedure
related morbidity and mortality may offer potentially cura-
tive therapy to patients with RA. Future studies should focus
on a curative procedure for patients with intractable RA.
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Allogeneic stem cell transplantation should be considered
for patients with a fully matched donor, focusing on adop-
tive allogeneic cell therapy for total elimination of self-reac-
tive lymphocytes while using safe, reduced intensity
conditioning.
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