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Regulation of Tenascin-C Expression by Tumor
Necrosis Factor-α in Cultured Human Osteoarthritis
Chondrocytes
YUTAKANAKOSHI, MASAHIRO HASEGAWA, AKIHIRO SUDO, TOSHIMICHI YOSHIDA, and ATSUMASAUCHIDA

ABSTRACT. Objective. Expression of tenascin-C reappears in articular cartilage of persons with osteoarthritis (OA),
while it is almost abolished in normal mature cartilage. Tumor necrosis factor-α (TNF-α), a proin-
flammatory cytokine, is upregulated in OA cartilage and is involved in the progression of OA, and stim-
ulates tenascin-C expression in other types of cells. We investigated regulation of tenascin-C expression
by TNF-α through nuclear factor-κB (NF-κB) in OA cartilage in vivo and in vitro.
Methods. Human articular cartilages were obtained from patients with OA and immunofluorescence
examination of tenascin-C and the activated RelA subunit was performed. Cultured chondrocytes iso-
lated from human OA cartilage were treated with TNF-α and with SN50. Activation of RelA subunit of
NF-κB was examined by immunolabeling. Changes in tenascin-C protein concentrations were deter-
mined by immunofluorescence of cells after monensin treatment and Western blot analysis of the cell
lysates, and mRNA levels were analyzed by quantitative real-time polymerase chain reaction.
Results. Increased intensity of tenascin-C staining was observed in the damaged cartilage compared
with normal cartilage. Activated RelA staining in chondrocyte nuclei was prominent in tenascin-C-pos-
itive areas of OA cartilage. Treatment of cultured chondrocytes by TNF-α induced translocation of acti-
vated RelA to the nuclei, followed by upregulation of tenascin-C expression in both mRNA and pro-
tein. Treatment with SN50 inhibited increases of RelA and tenascin-C expression in chondrocytes.
Conclusion. TNF-α stimulated tenascin-C expression through NF-κB signaling with RelA activation in
cultured OA chondrocytes, suggesting involvement of tenascin-C in OA cartilage remodeling.
(First Release Dec 1 2007; J Rheumatol 2008;35:147–52)
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Tenascin-C, a member of the extracellular matrix glycoprotein
family, consists of 6 similar subunits linked in their amino-ter-
minal domain disulfide bonds1. Its expression is very restrict-
ed in normal adult tissues and reappears in association with
wound healing, inflammatory processes, or neoplasia in a
number of tissues2-6. In the lesions, tenascin-C promotes
migration and proliferation of parenchymal and/or stromal
cells7-11. In articular cartilage, tenascin-C expression is also
associated with development of cartilage, but decreases
markedly during the maturation of chondrocytes, and is final-
ly almost abolished in adult articular cartilage12-14. In diseased
joints including those with osteoarthritis (OA), tenascin-C was
highly reexpressed in cartilage15-18. We have also demonstrat-
ed a correlation between the levels of tenascin-C in joint fluids
and severity of OA apparent on radiographs19.

OA is characterized by degradation of cartilage20. It is now
generally accepted that secretion of proinflammatory
cytokines, including interleukin 1ß (IL-1ß) and tumor necro-
sis factor-α (TNF-α), by chondrocytes causes loss of cartilage
matrix, resulting from the upregulation of enzymes, such as
matrix metalloproteases (MMP) and aggrecanase, in chondro-
cytes themselves degrading the cartilage21-26. It is known that
explants from OA cartilage are more susceptible to the effects
of proinflammatory cytokines than explants from nonarthritic
cartilage27,28. Proinflammatory cytokines are known to elicit
tenascin-C expression in various cells29-32. Studies have also
shown that IL-1ß upregulates tenascin-C expression in chon-
drocytes of OA cartilage16,32. IL-1ß and TNF-α play major
roles in the inflammatory response via the activation of a vari-
ety of transcription factors such as nuclear factor-κB (NF-
κB)23,33. NF-κB is a ubiquitous protein that specifically binds
to DNA consensus sequences, activating its transcription.
When the cytokine stimuli induce the phosphorylation of an
inhibitory subunit and its subsequent degradation, the RelA
subunit of NF-κB is activated and becomes capable of migrat-
ing to the nucleus, where it recognizes the consensus
sequences in DNA. IL-1ß previously stimulated the increasing
of RelA activation in human articular chondrocytes34. These
observations led to the hypothesis that TNF-α may also
induce tenascin-C production in OA chondrocytes, resulting
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in tenascin-C upregulation in diseased cartilage via active
RelA.

We observed the distribution of tenascin-C and activated
RelA in human OA tissues using an immunofluorescence
technique. As well, the stimulatory effects of TNF-α and
TNF-α with SN50 on the activated RelA subunit of NF-κB
and tenascin-C expression in protein and mRNA levels were
examined in cultured OA chondrocytes.

MATERIALS AND METHODS
Cartilage specimens. Human OA cartilage specimens were obtained from
femoral condyles of 15 patients ages 63–87 years (average 72.1 yrs) who
were undergoing total knee joint replacement for treatment of OA. Non-OA
cartilage samples were obtained from femoral condyles of 3 patients ages
19–33 years (average 25.4 yrs) with no history of joint disease and evidence
of macroscopic articular degeneration at the time of amputation for tumor
resection. The specimens were immediately fixed in 4% paraformaldehyde in
phosphate-buffered saline (PBS; pH 7.4) at room temperature overnight,
decalcified in treated K-CX (Falma, Tokyo, Japan), and embedded in paraf-
fin. The sections were cut at 5-µm thickness and placed on silane-coated glass
slides (Matsunami, Osaka, Japan).

All patients gave their informed consent, and this study was approved by
the local ethics committee.
Immunofluorescence for cartilage specimens. For double-immunofluores-
cence staining of tenascin-C and active RelA subunits, after antigen retrieval
was performed with 0.01 M citrate buffer at 97°C for 30 min, sections were
incubated with normal goat serum (Dako, Carpinteria, CA, USA) at room
temperature for 30 min. Then they were treated with primary antibodies,
mouse monoclonal antibody against the active form of RelA (Chemicon,
Temecula, CA, USA), and rabbit polyclonal anti-tenascin-C antibody (IBL,
Takasaki, Gunma, Japan), at room temperature overnight. After 3 washes with
PBS, the sections were incubated with Alexa Fluor 488-conjugated goat anti-
mouse IgG and Alexa Fluor 546-goat anti-rabbit IgG (Invitrogen, Carlsbad,
CA, USA) at room temperature for 3 h. Slides were mounted with Vectashield
(Vector Laboratories, Burlingame, CA, USA). Negative controls were incu-
bated with isotype-matched control instead of the primary antibodies. All
slides were viewed through an epifluorescence microscope equipped with
appropriate filters and photographed at equivalent exposures.
Chondrocyte isolation and culture. Chondrocytes were isolated from human
articular cartilage during knee replacements under sterile conditions.
Cartilage fragments were sharply curetted from the femoral condyles and the
tibial plateaus of knee joints. Fragments were incubated in 0.8% pronase solu-
tion (Calbiochem, Darmstadt, Germany) dissolved in Dulbecco’s modified
Eagle’s medium/Ham F12 (DMEM/F12; Gibco, Grand Island, NY, USA) for
30 min at 37°C with continuing agitation in an atmosphere of 5% CO2. After
they were washed in DMEM/F12, cartilage pieces were incubated with 0.4%
collagenase (Roche, Penzberg, Germany) in DMEM/F12 for 90 min at 37°C
with orbital mixing. The cell suspension was filtered using a 70-µm pore-size
nylon filter (BD Biosciences, Bedford, MA, USA) to remove the tissue
debris. The filtrate was centrifuged for 5 min at 1200 rpm. The cells were
washed in DMEM/F12 with 10% fetal bovine serum (FBS) 3 times and plat-
ed at 1 × 105 cells/well on 6-well tissue culture plates (Becton Dickinson
Labware, Franklin Lakes, NJ, USA) in DMEM/F12 supplemented with 10%
FBS, 10 µg/ml gentamicin (Gibco), and 25 µg/ml ascorbic acid (Sigma, St.
Louis, MO, USA). The purity of cells was checked by immunofluorescent
staining of chondroitin sulfate (Seikagaku Corp., Tokyo, Japan) and type II
collagen (Daiichi Fine Chemical, Toyama, Japan). The positive cells formed
over 85% in both cases (data not shown). Chondrocytes were grown at 37°C
in a humidified atmosphere of 5% CO2 and 95% air, and the medium was
changed every 2 days. All experiments were performed using the cells of pri-
mary or secondary cultures isolated from 10 different patients with OA joints.
Immunofluorescence for cultured chondrocytes. Chondrocytes were cultured

on culture slides (BD Biosciences) and incubated in fresh serum-free medium
with 0.1% bovine serum albumin (BSA) for 24 h, and then 100 ng/ml TNF-α
(PeproTech, London, UK) and 100 ng/ml TNF-α (PeproTech) with 100 µg/ml
SN50 peptide (Calbiochem) were added to the medium. SN50 peptide has
been shown to be a specific inhibitor of NF-κB activation35-37. After incuba-
tion, the cells were fixed and treated with 0.1% Triton X-100 to permeabilize
nuclear membranes. The slides were treated with mouse monoclonal antibody
against activated RelA subunit (Chemicon) and then with Alexa Fluor 488-
conjugated goat anti-mouse IgG (Invitrogen).

To determine the expression of tenascin-C protein, after serum-free con-
ditioning with 0.1% BSA for 24 h, chondrocytes were treated with 100 ng/ml
TNF-α (PeproTech). They were incubated with 1 µM monensin (Sigma) for
5 h before fixation to accumulate secretory proteins in the cytoplasm by
blocking intracytoplasmic transport38. The chondrocytes were incubated with
mouse monoclonal anti-tenascin-C antibody (IBL) at 4°C and Alexa Fluor
488-conjugated goat anti-mouse IgG (Invitrogen) for 3 h at room temperature.
Nuclei were counterstained with Hoechst 33342 (Sigma). Negative controls
were incubated with isotype-matched mouse control instead of the primary
antibodies.
Western blot analysis.When the cells were 80% to 90% confluent, after 24 h
of incubation with or without 100 ng/ml TNF-α, cultured chondrocytes were
washed 3 times with ice-cold PBS and solubilized in a solution [10 mM Tris-
HCl, 150 mM NaCl, 1 mM ethylene diamine tetraacetic acid (EDTA), 1%
Nonidet P-40, 0.1% sodium deoxycholate, 0.1% sodium dodecyl sulfate] con-
taining protease inhibitor cocktail (Sigma), pH 7.4. The lysates were cen-
trifuged for 15 min at 4°C at 14,000 g. The protein amounts of the samples
were adjusted by measurement of protein concentrations using a BCA protein
assay kit (Pierce, Rockford, IL, USA). The samples were subjected to SDS-
polyacrylamide gel electrophoresis (SDS-PAGE) and then transferred to a
polyvinylidene fluoride microporous membrane (Millipore, Bedford, MA,
USA) by a semi-dry transblot system (Atto, Tokyo, Japan). The membrane
was blocked with 5% skim milk and 50 mM Tris-HCl/150 mM NaCl (pH 7.6)
containing 0.1% Tween (TBS-T) at room temperature for 1 h and then incu-
bated with mouse monoclonal anti-tenascin-C antibody (IBL) overnight at
4°C. After washing 3 times, the membrane was incubated with the appropri-
ate horseradish peroxidase-labeled secondary antibody (Amersham
Biosciences, Buckinghamshire, UK) for 1 h. The signal was visualized using
ECL detection reagents (Amersham Biosciences) by the chemiluminescence
method. In order to ensure that equal amounts of total proteins were charged,
signals were normalized against ß-actin (Santa Cruz Biotechnology, Santa
Cruz, CA, USA).
RNA extraction and cDNA synthesis for quantitative real-time polymerase
chain reaction (PCR). After the cells were 80% to 90% confluent, chondro-
cytes were treated with different concentrations of TNF-α in the absence or
presence of 100 µg/ml SN50 peptide under a serum-free condition with 0.1%
BSA. Total RNA was isolated using Isogen (NipponGene, Toyama, Japan)
according to the manufacturer’s instructions. Complementary DNA (cDNA)
synthesis was performed by oligo(dT)15 priming from 1 µg of total RNA
using a cDNA synthesis kit (Roche) according to the manufacturer’s proto-
cols. TaqMan gene expression assay primer-probe pairs were ordered for
detection of tenascin-C (assay no. Hs00233648-ml) and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH; assay no. Hs99999905-ml). Quantitative
analysis of the cDNA was performed using the ABI Prism 7000 Sequence
Detector System (Applied Biosystems, Foster City, CA, USA) and TaqMan
Universal PCR Master Mix (Roche). The thermal cycling conditions consist-
ed of 50°C for 2 min, 95°C for 10 min, and 40 cycles of 95°C for 15 s and
60°C for 1 min. GAPDH was used as the housekeeping gene for internal con-
trol. Tenascin-C mRNA levels were normalized by GAPDH levels of each
sample. The levels were expressed as an x-fold induction compared with
untreated cells.
Statistical analysis. All data were expressed as mean ± standard deviation
(SD). Numeric data were statistically evaluated by the Mann-Whitney U-test
using Stat-View software (Abacus Concepts, Berkeley, CA, USA). A p value
less than 0.05 was considered statistically significant.
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RESULTS
Immunofluorescence for cartilage specimens. Double-
immunolabeling of tenascin-C and the activated RelA subunit
of NF-κB was performed in tissue specimens of OA and nor-
mal cartilages. In normal articular cartilage, tenascin-C stain-
ing was rarely observed in the superficial and upper-middle
zones, and nuclear staining of active RelA was not found
(Figure 1A). Conversely, tenascin-C labeling was strong in the
pericellular and interterritorial areas in the superficial and
upper-middle zones of OA specimens. Chondrocytes with

active RelA-positive nuclei were dominant in the area of the
tenascin-C-positive cartilage matrix and were often clustered
in OA specimens (Figures 1B, 1C). Negative control slides
incubated with isotype-matched control for the normal and
OA cartilage showed complete absence of immunostaining
(Figure 1D).
Immunofluorescence for cultured chondrocytes.We examined
NF-κB signaling after TNF-α treatment in cultured chondro-
cytes. While only weak nuclear staining was seen in untreated
cells, treatment of the cells with 100 ng/ml TNF-α resulted in
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Figure 2. Immunofluorescence of active RelA (A to C) and tenascin-C (D to F) in cultured chondrocytes
after treatment with TNF-α and TNF-α + SN50. In control cells, immunostaining of active RelA was faint
(A), while cells treated with TNF-α showed increasing nuclear fluorescence indicating translocation of
activated RelA (B). C. Expression of activated RelA in nucleus of chondrocytes treated with TNF-α with
SN50 was not increased. D. After 5-hour treatment with monensin, tenascin-C produced by chondrocytes
accumulated in transport vesicles of the cytoplasm. E. Chondrocytes cultured in 0.1% BSA show a few
granules. Vesicles containing tenascin-C of cells treated with TNF-α were increased. F. Tenascin-C expres-
sion in chondrocytes treated with TNF-α + SN50 was inhibited compared with those treated with TNF-α
alone. G. Immunostaining with isotype-matched control of the cartilages as a negative control shows
absence of immunostaining. Bars = 12.5 µm.

Figure 1.A. Double immunolabeling with anti-tenascin-C (red) and anti-active RelA (green) antibodies for
normal and OA cartilage. Tenascin-C deposition was weak in chondrocytes of the superficial and upper-
middle zones, and active RelA-positive nuclei were not observed in normal cartilage. B. In the superficial
and upper-middle layers of OA cartilage, tenascin-C was increased to the pericellular and interterritorial
areas with activated RelA-positive cells. Tenascin-C staining and the positive nuclei were diminished in the
lower-middle and deep zones of OA cartilage. C. A proportion of clusters of chondrocytes stained posi-
tively for active RelA. D. Immunostaining with isotype-matched control of the cartilages as a negative con-
trol shows the absence of immunostaining. A and B, bar = 200 µm. C and D, bar = 50 µm.
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apparent nuclear staining of active RelA in chondrocytes
(Figures 2A, 2B). And the results showed that SN50 inhibited
expression of activated RelA in nucleus (Figure 2C). When
chondrocytes were treated with TNF-α, more abundant vesicles
containing tenascin-C protein were observed in the cytoplasm
than in the cells without TNF-α treatment as controls, indicat-
ing increased production of tenascin-C proteins in chondrocytes
(Figures 2D, 2E). Moreover, SN50 inhibited the increases of
tenascin-C expression (Figure 2F). Negative control slides
incubated with isotype-matched controls for the cells showed
complete absence of immunostaining (Figure 2G).
Western blot analysis. Tenascin-C protein produced by cul-
tured chondrocytes was also analyzed by Western blotting. An
anti-tenascin-C antibody, 4F10TT, which is specific to the
extracellular growth factor-like domain, reacted with all
tenascin-C variants with molecular weights of 350 to 210 kDa.
In chondrocyte lysates, the major band was seen at 350 kDa,
comigrating with the large variants of human glioma tenascin-
C (Figure 3: L). The smallest variant (Figure 3: S), which lacks
the alternatively spliced FN III repeats and has a molecular
weight of 210 kDa, was weakly labeled. Treatment of chon-
drocytes with TNF-α increased significantly in expression of
tenascin-C, especially the large variants (Figure 3).
Quantitative real-time PCR.We determined tenascin-C upreg-
ulation in OA chondrocytes stimulated by TNF-α and TNF-α

with SN50 at the mRNA level (Figure 4). Quantitative real-
time PCR revealed that the tenascin-C mRNA level was
increased in response to 1 ng/ml TNF-α (1.90 ± 0.73; p <
0.05) in comparison with the level in untreated cells. The lev-
els were also significantly upregulated by TNF-α treatment of
10 ng/ml TNF-α (2.92 ± 1.51; p < 0.01) and 100 ng/ml (3.02
± 1.30; p < 0.01) in a dose-dependent manner. In addition,
SN50 suppressed the tenascin-C expression stimulated by
TNF-α of 1 ng/ml (1.06 ± 0.20; p < 0.05), 10 ng/ml (1.20 ±
0.32; p < 0.01), and 100 ng/ml (1.40 ± 0.29; p < 0.05), respec-
tively.

DISCUSSION
We noted strong tenascin-C immunostaining, mainly in the
pericellular and interterritorial matrix of chondrocytes, as well
as fibrillated cartilage, as described in previous studies15-18.
We also demonstrated that enhanced tenascin-C labeling was
associated with clusters of chondrocytes showing nuclear
staining of active RelA subunit. Previous studies demonstrat-
ed that treatment of explants from OA cartilage with IL-1ß
shows an enhanced tenascin-C staining in both the pericellu-
lar and interterritorial zones32, and that IL-1ß stimulation
induces activation of RelA subunit in human osteoarthritic
chondrocytes34. Strong tenascin-C staining in the OA carti-
lage was considered to be induced by these proinflammatory
cytokines through NF-κB signaling. It has been reported that
chondrocytes isolated from OA express proinflammatory
cytokines and their receptors more highly than normal cells39.
Indeed, IL-1ß stimulates expression of tenascin-C mRNA in
cultured chondrocytes in vitro16.

To examine whether TNF-α also stimulates tenascin-C
synthesis, we examined tenascin-C expression in cultured
chondrocytes isolated from OA cartilage and observed that
TNF-α induces nuclear translocation of active RelA; more-
over, our results showed that SN50 inhibited activated RelA
expression in nucleus of chondrocytes36,37. We observed that
TNF-α stimulated the expression of tenascin-C on protein and
mRNA levels, using immunofluorescence and quantitative
real-time PCR. We also found that SN50 inhibited the
immunostaining and mRNA expression of tenascin-C stimu-
lated by TNF-α. Western blotting showed dominant secretion
of large tenascin-C variants in human articular chondrocytes.
Thus, our findings revealed that TNF-α could stimulate
tenascin-C production, through NF-κB signaling with RelA
activation in chondrocytes.

It has been considered that TNF-α stimulates different
pathways of life and death through activating the transcription
factor NF-κB, and that hyperactivation of NF-κB promotes
cell survival and/or cell proliferation in most cell types40-42.
The common combination in NF-κB complex is a p50-RelA
heterodimer that is combined with IκB protein, which inhibits
the translocation of the NF-κB complex into the nucleus.
Stimuli such as TNF-α and IL-1ß dissociate the NF-κB com-
plex from IκB and translocate it into the nucleus. This active
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Figure 3. Western blot analysis of lysates from cultured chondrocytes incu-
bated with or without TNF-α. After TNF-α treatment, bands for tenascin-C,
particularly the large variants, were denser and thicker (lane 2) compared
with no treatment (lane 1). Positions of the largest (L) and smallest (S) bands
of human glioma tenascin-C, which comigrated in the gel, are indicated.
Molecular weights of standard proteins are indicated on the left.
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NF-κB complex binds to the NF-κB binding site of responsive
genes and induces their transcription. Studies have suggested
that the signaling in RelA activation particularly affects cell
proliferation43-45. Knockout mice missing RelAwere reported
to have died before birth from liver cell apoptosis43. NF-κB
activation may play an important role in resistance to the cyto-
static effect of TNF-α. Tenascin-C is also known to promote
proliferation in various cells9-13. In our study, in areas of
dense tenascin-C deposition, chondrocyte clusters with
nuclear RelA staining could often be observed in OA carti-
lages. These findings suggest that deposited tenascin-C can
promote chondrocyte proliferation through NF-κB signaling
in OA cartilage rather than cell death. In addition, our recent
studies using tenascin-C-deficient mice demonstrated that
activation of NF-κB in the lung tissues of asthmatic mice is
decreased compared with their wild-type counterparts, and
that TNF-α expression is diminished in mice with con-
canavalin A-induced hepatitis46,47. The expression and func-
tion of these molecules may be reciprocally regulated in
inflammatory tissues.
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