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Association of the X-Chromosomal Genes TIMP1 and

IL9R with Rheumatoid Arthritis
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ABSTRACT. Objective. Rheumatoid arthritis (RA) is an inflammatory joint disease with features of an autoim-
mune disease with female predominance. Candidate genes located on the X-chromosome were
selected for a family trio-based association study.
Methods.A total of 1452 individuals belonging to 3 different sample sets were genotyped for 16 sin-
gle-nucleotide polymorphisms (SNP) in 7 genes. The first 2 sets consisted of 100 family trios, each
of French Caucasian origin, and the third of 284 additional family trios of European Caucasian ori-
gin. Subgroups were analyzed according to sex of patient and presence of anti-cyclic citrullinated
peptide (anti-CCP) autoantibodies.
Results. Four SNP were associated with RA in the first sample set and were genotyped in the  second
set. In combined analysis of sets 1 and 2, evidence remained for association of 3 SNP in the genes
UBA1, TIMP1, and IL9R. These were again genotyped in the third sample set. Two SNP were asso-
ciated with RA in the joint analysis of all samples: rs6520278 (TIMP1) was associated with RA in
general (p = 0.035) and rs3093457 (IL9R) with anti-CCP-positive RA patients (p = 0.037) and male
RA patients (p = 0.010). A comparison of the results with data from whole-genome association stud-
ies further supports an association of RA with TIMP1. The sex-specific association of rs3093457
(IL9R) was supported by the observation that men homozygous for rs3093457-CC are at a signifi-
cantly higher risk to develop RA than women (risk ratio male/female = 2.98; p = 0.048).
Conclusion. We provide evidence for an association of at least 2 X-chromosomal genes with RA:
TIMP1 (rs6520278) and IL9R (rs3093457). (First Release Sept 1 2009; J Rheumatol 2149–57;
doi:10.3899/jrheum.090059)
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Rheumatoid arthritis (RA) is an inflammatory joint disease
with features of an autoimmune disease and a prevalence of
about 1% in the European Caucasian population1. There is
evidence for genetic influences on RA and heritability is
estimated to be 60%2. Female sex is a well known risk fac-
tor for RA. The female to male ratio ranges between 3 and
43. There may be a link between heritability and sex, as the
female genome differs crucially from the male genome. The
Y chromosome supplies males with several genes absent in
the female4, while incomplete X-inactivation or varying
inactivation patterns may lead to gene-dosage skewing in
females5. X-chromosomal abnormalities were observed in
immunological diseases, e.g., a significantly higher rate of
acquired X-monosomy6 and significantly skewed X-inacti-
vation7. Patients with Turner’s syndrome are known to man-
ifest common autoimmune features8. Whole-genome link-
age studies for RA suggest among others the presence of
loci of interest on chromosome X9,10. Thus, X-chromosomal
genes are highly relevant candidate genes to test for associ-
ation with RA.

For this study we selected 7 genes, CD40LG, CD99,
EIF2S3, IL9R, TIMP1, UBA1, and XIAP (Table 1). Most of
these genes are involved in pathways thought to be crucial
for RA etiology, and evidence for their involvement in other
immunological diseases exists as well.

CD99 and IL9R are situated within pseudoautosomal
regions and have a functional homologue on the Y chromo-
some, whereas the other genes are restricted to the X chro-
mosome. To our knowledge none of the genes we selected,
with the exception of TIMP1, has been investigated for asso-
ciation with RA in candidate gene studies.

CD40LG is involved in the regulation of B cell functions
and the production of autoantibodies11. CD99 is described to
play a role in transport regulation of MHC class I mole-
cules12, lymphocyte adhesion13, and induced T cell death14.
EIF2S3 is the γ-subunit of the eukaryotic translation initia-
tion factor (EIF2) and is only partially affected by X-inac-
tivation15. EIF2 is involved in stress responses and apop-
tosis16. Insufficient apoptosis of inflammatory cells in syn-
ovial membrane as well as increased apoptosis, especially
within the synovial lining, has been demonstrated in
RA17,18. IL9R is a receptor for the cytokine interleukin 9
(IL-9) expressed on many hematopoietic cells including T
cells19, and it is also involved in early T cell develop-
ment20. The gene product of TIMP protects extracellular
matrix from degradation by inhibiting metalloproteinases
(MMP)21. Secretion of MMP is required for the initial
stage of angiogenesis22, contributing to pannus formation
in RA23. TIMP1 (SNP rs5953060) was described to be
associated with RA in a small Japanese cohort24 and has
also shown association with other immunity disorders like
Crohn’s disease25 and systemic sclerosis26. UBA1 (also
known as UBE1) catalyzes the first step in ubiquitin con-
jugation to mark cellular proteins for degradation27.
Involvement of UBA1 in cell-cycle regulation and apopto-
sis can be demonstrated and provides a functional link to
RA28. XIAP is a potent inhibitor of apoptosis and is
involved in regulation of lymphocyte homeostasis29.

Our aim was to investigate genetic variants of selected
X-chromosomal genes in a candidate gene association study
based on a family-trio approach in a European Caucasian
population.
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Table 1. Selected genes in order of chromosomal location (short arm p to long arm q). Data were acquired using Entrez Gene and Entrez Protein databases,
as well as the UCSC Genome Browser Build March 2006. rs numbers according to dbSNP Build 127.

Gene Name Locus SNP Investigated Position/Type of Pseudo-autosomal Inactivation Status59 Published Disease
Variation Associations

CD99 CD99 molecule Xp22.32 rs311071 Intronic Yes Not inactivated —
rs312258 Intronic

EIF2S3 Eukaryotic X922.2–p22.1 rs16997659 Coding, nonsynonymous No Partial inactivation —
translation initiation rs12556742 Intronic

factor 2 subunit 3 rs12847067 3’ downstream
TIMP1 Tissue inhibitor of Xp11.23 rs4898 Coding, synonymous No Partial inactivation Rheumatoid 

metalloproteinase 1 rs6520278 Intronic arthritis24

rs5953060 Intronic Asthma57

Crohn’s disease25

Systemic sclerosis26

UBA1 Ubiquitin-like Xp11.23 rs4239963 Intronic No Partial inactivation —
modifier activating rs2070169 Coding, nonsynonymous

enzyme 1 rs4529579 Intronic
XIAP X-linked inhibitor Xq25 rs7878958 5’ upstream No Unknown —

of apoptosis rs7053190 Intronic
rs9856 Coding, 3’ UTR

CD40LG CD40 ligand Xq26 rs3092936 Intronic No Not inactivated Systemic lupus
erythematosus11

IL9R Interleukin 9 Xq28 rs3093457 Intronic Yes Not activated Asthma58

receptor rs1973881 Intronic
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MATERIALS AND METHODS

Three sets of family trios, RA patient (i.e., the affected individual) and both
parents, were genotyped. Detailed characteristics of the first 2 and parts of
the third set have been described30. Briefly, the first 2 sets consisted of 100
family trios of French Caucasian origin. The third set consisted of 284 addi-
tional European Caucasian families, from France, Germany, Italy, Portugal,
Spain, The Netherlands, and Belgium. All affected individuals fulfilled the
American College of Rheumatology 1987 revised criteria for RA31. In
addition the status of anti-cyclic citrullinated peptide autoantibodies
(anti-CCP, also known as ACPA) was available for French and German RA
patients (CCP-positive, n = 226; CCP-negative, n = 73). In our multistage
approach all SNP were genotyped in the first sample set (“exploration set”).
Markers with a significant association with RA (uncorrected p < 0.05) were
then genotyped in the second sample set (“replication set”). When evidence
increased in favor of an association, i.e., the p value of the association
decreased in the combined analysis of both sets, markers were genotyped
again in the third sample set (the multinational European replication set).

Genomic DNA was purified from fresh peripheral blood leukocytes or
from Epstein-Barr virus-transfected cell lines using standard methods.

SNP were chosen based on their position in the gene, depending on

gene length and validation status. Information from public databases
(PupaSNP, UCSC Genome Browser, Ensembl) was used to aid in SNP
selection. Selected SNP are listed in Table 1.

Genotyping was carried out using the genoSNIP technique (Bruker
Daltonics, Billerica, MA, USA)32. Polymerase chain reaction primers were
designed using MuPlex Vs 2.2. SBE-primer design was carried out using
PrimExtend, an in-house software tool based on CalcDalton33. Primer
sequences are shown in Table 2. 

Samples of the third set were genotyped by applying a TaqMan 5’ allel-
ic discrimination assay (Applied Biosystems, Foster City, CA, USA) fol-
lowing the manufacturer’s protocols.

For quality control purposes Mendelian laws of inheritance and
Hardy-Weinberg equilibrium (HWE) in nontransmitted controls had to be
fulfilled (p > 0.01). HWE analysis for nonpseudoautosomal genes was car-
ried out in healthy female controls (mothers) only. All genotyping results
fulfilled the quality control criteria. Genotype call-rate was more than 95%.

Statistical analysis. HWE was investigated using a chi-square test with 1
degree of freedom. Linkage and association analyses were performed using
the transmission disequilibrium test (TDT)34 and the genotype relative risk
(GRR) test35. The TDT compares the transmission of SNP alleles from het-
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Table 2. Polymerase chain reaction (PCR) primer pairs and genotyping primers used in this study.
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erozygous parents to affected offspring with a transmission ratio of 50% as
expected by Mendel’s law. The GRR test compares differences in genotype
distribution between RA cases and “virtual controls” reconstructed from
nontransmitted parental alleles. Haploview 4.1 software was used for
gene-wide haplotype analysis36. Tests were also done in sample sets strati-
fied for sex or anti-CCP status of RA patients. We used a 2-tailed test of
interaction to assess significance of differences between subgroups37.

For nonpseudoautosomal genes XTDT was applied as implemented in
Haploview 4.138. As proposed39, males were treated like homozygous
females for comparing allele frequencies by allele counting. Additionally,
for GRR tests (Lathrop tests) only maternal reconstructed control geno-
types and genotypes from corresponding affected female children were
included.

RESULTS

In the first set, consisting of 100 French Caucasian family
trios, 3 genes, IL9R, TIMP1, and UBA1, showed evidence
for association. SNP with evidence for association were
again genotyped in the second French Caucasian family trio
set (100 additional trios). A combined analysis of set 1 and
set 2 revealed a decreased p value for 3 markers. These SNP,
rs4239963 (UBA1), rs6520278 (TIMP1), and rs3093457
(IL9R), were genotyped in the third European Caucasian
sample set (284 additional trios). These data are summarized
in Tables 3, 4, and 5. Details of family trio-based association
analysis for all markers are shown in Tables 6, 7, and 8.

While the UBA1 SNP rs4239963 showed significant
association with RA in the first 2 sample sets, it was not

found to be associated with RA in the combined analysis of
all 3 sets, although the trend was the same as in sets 1 and 2,
with the minor allele (C) being undertransmitted (Table 3).

In contrast, SNP rs6520278 (TIMP1) was found to be sig-
nificantly associated with RA in general, which is indicated
by significant p values in the combined analysis of all 3 sets
(p = 0.035; Table 4). The TDT showed the minor allele T
was undertransmitted. Association of rs6520278 in families
with male offspring could not be replicated in the European
replication set. Additionally, the test of interaction revealed
no significant difference between female and male sub-
groups for the SNP, as effect sizes (GRR minor vs major
genotype) of the 2 subgroups did not differ significantly (p
for interaction = 0.071). Another SNP, rs6520277 of TIMP1,
also showed significant p value in families with male off-
spring in set 1, but this result could not be replicated in the
second sample set.

SNP rs3093457 of IL9R was found to be significantly
associated with RA in 2 subgroups in the combined analy-
sis: families with anti-CCP-positive patients (p = 0.037) and
families with male patients (p = 0.010), while an association
of rs3093457 was only marginally significant in all family
trios (p = 0.056; Table 5) and was not significant in families
with female RA patients. In both subgroups the association
was due to an increase of the homozygous minor genotype
rs3093457-CC in RA cases. We also performed an inter -
action test to identify specific effects concerning anti-CCP
status and/or sex. Comparing the GRR of rs3093457-CC for
male and female subgroups revealed that the SNP affected
males significantly more than females (p = 0.048). GRR in
families with male offspring was about 3 times greater in the
combined analysis of all sample sets (ratio of male/female
GRR 2.98, 95% CI 1.01–8.79; Table 9). No significant
 difference between effect sizes was observed for
anti-CCP-positive and negative subgroups.

DISCUSSION

We investigated SNP in 7 X-chromosomal genes for associ-
ation with RA and were able to detect evidence for associa-
tion for markers of 2 genes, TIMP1 and IL9R. SNP
rs6520278 of TIMP1 showed a significant association in the
combined analysis of all 3 sets (n = 484 family trios), with
the minor T-allele being undertransmitted in RA patients
(affected children), indicating a protective effect for this
allele.

SNP rs6520278 was measured directly in at least 3
whole-genome association studies (WGAS) [the Spanish
Upstream Regulatory Region study40; the British Wellcome
Trust Case-Control Consortium (WTCCC) study39; the
North American Rheumatoid Arthritis Consortium and
Swedish Epidemiological Investigation of Rheumatoid
Arthritis41 studies], but p values were not significant. This
might be due to disease heterogeneity or, if the analyzed
variant is not a causative variant, to differences in the link-
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Table 3. Results of family-trio TDT analysis for UBA1 (rs4239963, minor
allele C): results in all samples in a given sample set; minor allele trans-
missions (no. of transmitted alleles: untransmitted alleles) are shown.

Set 1 Set 1 & 2 Set 1 & 2 & 3

No. of informative families 31 69 192
Minor allele transmission 10:21 21:48 86:106
TDT p value 0.048 0.001 0.149

Table 4. Results of family-trio TDT analysis for TIMP1 (rs6020277, minor
allele C; rs6520278, minor allele T). Minor allele transmissions (no. of
transmitted alleles: untransmitted alleles) are shown.

rs6520277 Set 1, Set 1 & 2, Set 1 & 2 &  
male male 3, male

No. of families 6 9 NI
Minor allele transmission 0:6 1:8 NI
TDT p value 0.014 0.020 NI

rs6520278 Set 1 Set 1 & 2 Set 1 & 2 & 3
No. of informative families 45 78 189
Minor allele transmission 15:30 29:49 80:109
TDT p value 0.025 0.024 0.035

rs6520278 Set 1, Set 1 & 2, Set 1 & 2 &
male male 3, male

No. of informative families 7 9 21
Minor allele transmission 0:7 1:8 9:12
TDT p value 0.008 0.020 0.513

Male subgroup: family trios with male patients. NI: not investigated.
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age disequilibrium of the various sample groups. On the
other hand, we found several markers in the WGAS in prox-
imity (± 200 kb, as proposed40) to TIMP1 associated with
RA (Table 10) at the single-marker level.

UBA1 and TIMP1 are both situated on the same chromo-
somal band (Xp11.23) and about 370 kb apart. We could not
confirm an association of the UBA1 gene with RA in the
analysis of all 3 sample sets. However, in WGAS several
SNP near the gene showed significant p values as well
(Table 10). Given the proximity of UBA1 and TIMP1, these
data might indicate the presence of causative variants in this
chromosomal region.

Linkage disequilibrium (correlation of alleles of 2 poly-
morphisms in a given population) was examined between
SNP associated with RA in our study and SNP in proximity
that are also associated with RA in WGAS. Because SNP
data for rs4239963 (UBA1) were not available from
HapMap (release 23) and the IL9R region was not covered
by the cited WGAS, only TIMP1 could be investigated. The
SNP rs760580 correlated with rs6520278 of TIMP1 as
shown by high D’ (0.545) and r2 (0.222). Moreover, SNP
rs760580 was associated with RA in the WTCCC study at
the single-marker level (p = 0.044) and showed a protective
effect of the minor allele, as did rs6520278.

TIMP1 SNP rs5953060 was described to be associated
with RA in a small Japanese cohort (p = 0.02)42. While we
could not replicate this association (p = 0.228; Table 6), we
found linkage disequilibrium between rs5953060 and
rs65020278 (D’ = 1, r2 = 0.607). Therefore it appears possi-
ble that rs5953060 in the Japanese study reflects association
of the same unknown causative locus in the TIMP1 region
as did rs6520278 in our study due to different linkage dis -
equilibrium among populations.

We did not find a significant sex-specific effect of
rs6520278, although another TIMP1 SNP investigated in
our study, rs6520277, did hint at sex-specific effects of the
gene. This SNP was significantly associated with RA in
families with male children in the first set and in the com-
bined analysis of the first and second sets. However, the

small number of informative families of male RA patients
did not allow for final conclusions. Further investigations
are required to clarify possible sex-specific effects of
TIMP1.

TIMP1 could influence the etiology of RA in several
ways. It inhibits MMP43,44 and subsequently prevents the
degradation of cartilage22. The inhibition of MMP also may
inhibit angiogenesis required for pannus formation23,45. A
genetic association of TIMP1 with RA therefore supports
the hypothesis that modified angiogenesis might play an
important role in the etiology of RA due to altered regula-
tion of MMP via their interactions with TIMP1.

Synovial endothelial cells of patients with RA secrete
decreased levels of TIMP146. Levels of TIMP1 expression
are affected by X-chromosomal inactivation47,48, but TIMP1

partially escapes X-chromosomal gene silencing49. TIMP1

variants may also lead to differences in the level of expres-
sion, e.g., SNP might be involved in incomplete gene silenc-
ing or in other regulatory mechanisms. It remains to be seen
whether allele-specific effects contribute to differences in
TIMP1 expression.

Another SNP associated with RA in our study was
rs3093457 in the IL9R gene. SNP near IL9R were not inves-
tigated in any of the WGAS, thus our findings are the only
data available for this gene and this region. The homozy-
gous minor genotype CC was marginally increased in all
cases (p = 0.056) and was significantly increased in the
anti-CCP-positive subgroup (p = 0.037) and in male RA
patients (p = 0.01). The interaction test result further sup-
ports the sex-specificity of the association with males, who
are 3 times more affected by this genotype than females.
Sex-specific effects for IL9R have been described for bipo-
lar dis order as well as childhood wheezing, an asthma char-
acteristic, with associations limited to males50,51. The
observed association of the X-chromosomal IL9R with RA
would therefore provide further evidence for sex-specific
disease mechanisms in RA.

There are several possibilities for IL9R involvement in
the etiology of RA. Different IL9R splice variants affect the
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Table 5. Results of family-based case-control analysis of IL9R (rs3093457, minor allele C).

Set 1 Set 1 & 2 Set 1 & 2 & 3

No. of cases 89 180 437
Homozygous minor genotype vs others (Lathrop) p value 0.028 0.020 0.056
Minor allele GRR (95% CI) 2.34 (1.1–5) 1.96 (1.2–3.4) 1.46 (1–2.1)

Set 1, male Set 1 & 2, male Set 1 & 2 & 3, male
No. of cases 12 20 55

Homozygous minor genotype vs others (Lathrop) p value 0.013 0.005 0.01
Minor allele GRR (95% CI) 15.49 (1.8–130.9) 11.23 (2.1–60) 3.75 (1.4–10.2)

Set 1, a-CCP+ Set 1 & 2, a-CCP+ Set 1 & 2 & 3, a-CCP+
No. of cases 68 132 209

Homozygous minor genotype vs others (Lathrop) p value 0.019 0.008 0.037
Minor allele GRR (95% CI) 2.71 (1.2–6.2) 2.33 (1.2–4.3) 1.76 (1–3)

GGR: genetic relative risk; male subgroup: family trios with male patients; a-CCP+: subgroup positive for anti-cyclic citrullinated peptide antibodies, i.e.,
family trios with anti-CCP-positive patients.
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influence of IL-9, because they differ in IL-9-binding abili-
ties52. Expression of IL-9 was shown to be correlated with
inflammation events and infiltration of lymphocytes in aller-
gic diseases53. The STAT pathway is the main signaling path-

way of IL-9/IL-9R54, and its role in RA is discussed55. IL9R

is also involved in early T cell development20, which is rele-
vant for RA, as the balance between autoreactive T cells and
regulatory T cells is essential for immune tolerance.
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Table 6. Results of TDT analysis for SNP in family trios of set 1.

SNP Gene TDT Allele Transmission Ratio
p value

All family trios
rs3092936 CD40LG 0.595 C 9:6
rs311071 CD99 0.569 T 41:36
rs312258 CD99 0.092 G 47:32
rs16997659 EIF2S3 0.819 C 10:9
rs12556742 EIF2S3 0.731 G 18:16
rs12847067 EIF2S3 0.739 G 19:17
rs3093457 IL9R 0.087 C 46:31
rs1973881 IL9R 0.887 G 25:24
rs4239963 UBA1 0.048 G 21:10
rs11558783 UBA1 0.513 G 12:9
rs4529579 UBA1 0.435 T 23:18
rs6520277 TIMP1 0.307 T 27:20
rs6520278 TIMP1 0.025 C 30:15
rs5953060 TIMP1 0.228 C 26:18
rs7878958 XIAP 0.758 C 22:20
rs7053190 XIAP 0.578 T 16:13
rs9856 XIAP 0.773 G 25:23

Family trios with male offspring
rs3092936 CD40LG 1 — 0:0
rs311071 CD99 0.166 T 9:4
rs312258 CD99 0.206 G 7:3
rs16997659 EIF2S3 1 — 1:1
rs12556742 EIF2S3 0.564 G 2:1
rs12847067 EIF2S3 0.564 G 2:1
rs3093457 IL9R 0.011 C 9:1
rs1973881 IL9R 0.248 A 4:2
rs4239963 UBA1 0.564 G 2:1
rs11558783 UBA1 0.564 G 2:1
rs4529579 UBA1 0.655 C 3:2
rs6520277 TIMP1 0.014 T 6:0
rs6520278 TIMP1 0.008 C 7:0
rs5953060 TIMP1 0.103 C 5:1
rs7878958 XIAP 0.655 C 3:2
rs7053190 XIAP 0.655 T 3:2
rs9856 XIAP 1 — 2:2

Family trios with female offspring
rs3092936 CD40LG 0.595 C 9:6
rs311071 CD99 1 > 0.1 — 32:32
rs312258 CD99 0.232 G 40:30
rs16997659 EIF2S3 0.808 C 9:8
rs12556742 EIF2S3 0.857 G 16:15
rs12847067 EIF2S3 0.862 G 17:16
rs3093457 IL9R 0.232 C 40:30
rs1973881 IL9R 0.647 G 23:20
rs4239963 UBA1 0.059 G 19:9
rs11558783 UBA1 0.637 G 10:8
rs4529579 UBA1 0.250 T 22:15
rs6520277 TIMP1 0.758 T 22:20
rs6520278 TIMP1 0.194 C 23:15
rs5953060 TIMP1 0.631 C 21:17
rs7878958 XIAP 0.746 C 20:18
rs7053190 XIAP 0.683 T 13:11
rs9856 XIAP 0.763 G 23:21
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We provide evidence suggesting association of 2 X-chro-
mosomal genes, TIMP1 and IL9R, with RA. As in other stud-
ies of RA39, the effects of the observed associations were
modest. This might be a reason why only nominal signifi-
cance was achieved. However, our multistage approach ana-
lyzing and combining multiple study cohorts allowed testing
for such modest genetic effects56. It is necessary to verify the
associations we observed in additional larger cohorts.

While our findings might not explain the female pre-
dominance in RA, they point out that different disease
mechanisms might exist in females and males. To eluci-
date the genetic background of complex diseases such as
RA it might be beneficial to consider sex-specific effects,
e.g., using sex-stratified sample subsets for association
studies.
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Table 7. Results of TDT analysis for selected SNP in family trios sets 1 and 2 combined.

SNP Gene TDT Allele Transmission Ratio
p value

All family trios
rs3093457 IL9R 0.191 C 83:67
rs4239963 UBA1 0.001 G 48:21
rs6520277 TIMP1 0.131 T 50:36
rs6520278 TIMP1 0.024 C 49:29
Family trios with male offspring
rs3093457 IL9R 0.071 C 11:4
rs4239963 UBA1 0.157 G 6:2
rs6520277 TIMP1 0.020 T 8:1
rs6520278 TIMP1 0.020 C 8:1
Family trios with female offspring
rs3093457 IL9R 0.391 C 73:63
rs4239963 UBA1 0.003 G 42:19
rs6520277 TIMP1 0.365 T 43:35
rs6520278 TIMP1 0.118 C 41:28

Table 8. Results of TDT analysis for selected SNP in family trios of sets 1, 2, and 3 combined.

SNP Gene TDT Allele Transmission Ratio
p value

All family trios
rs4239963 UBA1 0.149 G 106:86
rs6520278 TIMP1 0.035 C 109:80

Family trios with male offspring
rs4239963 UBA1 0.853 C 15:14
rs6520278 TIMP1 0.513 T 12:9

Family trios with female offspring
rs4239963 UBA1 0.056 G 91:67
rs6520278 TIMP1 0.023 C 96:67

Table 9.  Results of interaction test for IL9R (rs3093457) in subgroups of the combined set 1 & 2 & 3.

Male Female

No. of cases 55 382
Minor allele GRR (95% CI) 3.75 (1.4–10.2) 1.26 (0.8–1.9)
Ratio of GRR (95% CI) 2.98 (1.01–8.79)
p 0.048

a-CCP+ a-CCP–
No. of cases 209 72
Minor allele GRR (95% CI) 1.76 (1.0–3) 1.05 (0.3–3.1)
Ratio of GRR (95% CI) 0.6 (0.16–2.17)
p 0.216

GRR: genetic relative risk. Male and female subgroups: family trios with male or female patients; a-CCP+ and
a-CCP– subgroups: anti-CCP-positive and negative subgroups, i.e., family trios with anti-CCP-positive or neg-
ative patients.
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